Laplace算子特征值和的精细下界  

Refined Lower Bound for Sums of Eigenvalues of the Laplace Operator

在线阅读下载全文

作  者:何跃 阮其华[2,3] Yue He;Qihua Ruan(Institute of Mathematics,School of Mathematics Sciences,Nanjing Normal University,Nanjing 210023;Department of Mathematics,Putian University,Fujian Putian 351100;Key Laboratory of Applied Mathematics(Putian University),Fujian Province University,Fujian Putian 351100)

机构地区:[1]南京师范大学数学科学学院数学研究所,南京210023 [2]莆田学院数学系,福建莆田351100 [3]应用数学福建省高校重点实验室(莆田学院),福建莆田351100

出  处:《数学物理学报(A辑)》2023年第1期14-26,共13页Acta Mathematica Scientia

基  金:国家自然科学基金(11871278,11971253);应用数学福建省高校重点实验室(莆田学院)开放课题(SX202101)。

摘  要:该文研究了R^(n)中Laplace算子在有界域Ω上的Dirichlet特征值和的下界.众所周知:第k个Dirichlet特征值λk(Ω)服从Weyl渐近公式,即λk(Ω)~4π^(2)/[wnV(Ω)]^(2)/nk^(2)/n当k→∞时,其中wn和V(Ω)分别为是R^(n)中n维单位球的体积和Ω的体积.根据上述公式,Pólya猜测λk(Ω)≥4π2/[wnV(Ω)]2/nk^(2)/n,■k∈N.这就是著名的Pólya猜想.对这一问题的研究由来已久,已有很多的工作.特别是,近几十年来最显著的成就之一是由Berezin[4],以及李伟光和丘成桐[3]分别独立取得的.他们部分解决了Pólya猜想,只是多了一个因子n/(n+2).后来,Melas^([7])改进了Berezin-Li-Yau的估计,在不等式右边增加了一个正的k阶项.该文采用与Melas几乎相同的论证,进一步完善了Melas的估计.In this paper,we study lower bounds for higher eigenvalues of the Dirichlet eigenvalue problem of the Laplacian on a bounded domainΩin R^(n).It is well known that the k-th Dirichlet eigenvalueλk(Ω)obeys the Weyl asymptotic formula,that is,λk(Ω)~4π~2/[wnV(Ω)]2/nk^(2)/nas k→∞,where wnand V(Ω)are the volume of n-dimensional unit ball in R^(n)and the volume ofΩrespectively.In view of the above formula,Polya conjectured thatλk(Ω)≥4π^(2)/[wnV(Ω)]2/nk^(2)/nfor k∈N.This is the well-known conjecture of Polya.Studies on this topic have a long history with much work.In particular,one of the more remarkable achievements in recent tens years has been achieved independently by Berezin[2]and Li and Yau[4],respectively.They solved partially the conjecture of Pólya with a slight difference by a factor n/(n+2).Later,Melas^([7])improved Berezin-Li-Yau’s estimate by adding an additional positive term of the order of k to the right side.Here,following almost the same argument as Melas,we further refine Melas’s estimate.

关 键 词:(分数阶)Laplace算子 Dirichlet特征值 高阶特征值 Weyl渐近公式 Pólya猜想 Berezin-Li-Yau不等式 惯性矩 

分 类 号:O186.1[理学—数学]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象