Development of a prediction model for enteral feeding intolerance in intensive care unit patients:A prospective cohort study  被引量:15

在线阅读下载全文

作  者:Xue-Mei Lu Deng-Shuai Jia Rui Wang Qing Yang Shan-Shan Jin Lan Chen 

机构地区:[1]School of Nursing,Shanghai Jiao Tong University,Shanghai 200025,China [2]Department of Nursing,Shanghai General Hospital,Shanghai Jiao Tong University,Shanghai 200080,China [3]Department of Critical Care Medicine,Shanghai General Hospital,Shanghai Jiao Tong University,Shanghai 200080,China

出  处:《World Journal of Gastrointestinal Surgery》2022年第12期1363-1374,共12页世界胃肠外科杂志(英文版)(电子版)

摘  要:BACKGROUND Enteral nutrition(EN)is essential for critically ill patients.However,some patients will have enteral feeding intolerance(EFI)in the process of EN.AIM To develop a clinical prediction model to predict the risk of EFI in patients receiving EN in the intensive care unit.METHODS A prospective cohort study was performed.The enrolled patients’basic information,medical status,nutritional support,and gastrointestinal(GI)symptoms were recorded.The baseline data and influencing factors were compared.Logistic regression analysis was used to establish the model,and the bootstrap resampling method was used to conduct internal validation.RESULTS The sample cohort included 203 patients,and 37.93%of the patients were diagnosed with EFI.After the final regression analysis,age,GI disease,early feeding,mechanical ventilation before EN started,and abnormal serum sodium were identified.In the internal validation,500 bootstrap resample samples were performed,and the area under the curve was 0.70(95%CI:0.63-0.77).CONCLUSION This clinical prediction model can be applied to predict the risk of EFI.

关 键 词:Enteral feeding intolerance Critical care medicine Clinical prediction model Nutrition assessment Nutritional support Critical care nursing 

分 类 号:R472[医药卫生—护理学]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象