非定常渗透对流模型的二阶BDF有限元算法的误差分析  

Optimal Error Estimate of Second-order BDF Finite Element Schemes for Unsteady Penetrative Convection Model

在线阅读下载全文

作  者:曹敏 CAO Min(College of Mathematics and Physics,Wenzhou University,Wenzhou,China325035)

机构地区:[1]温州大学数理学院,浙江温州325035

出  处:《温州大学学报(自然科学版)》2023年第1期12-20,共9页Journal of Wenzhou University(Natural Science Edition)

摘  要:研究了非定常渗透对流模型的全离散化的二阶BDF有限元算法,提出并分析了基于外推的线性化全离散方案,证明了该方程组离散解的稳定性,通过对误差函数利用能量估计方法,结合有限元逆不等式和Sobolev空间的插值不等式,得到了无条件的最优L2误差估计.This paper studies the fully discretized second-order BDF finite element algorithm of the unsteady penetrative convection model, puts forward and analyzes the discretization scheme based on linear extrapolation, and proves the stability of discrete solution to the system. Based on the theoretical analysis of the energy estimate of the error function and using finite element inverse and interpolation inequality in Sobolev space, we obtain the unconditional optimal L2 error estimation.

关 键 词:渗透对流模型 二阶BDF有限元 误差分析 无条件最优误差估计 

分 类 号:O175.2[理学—数学]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象