Mobility edges generated by the non-Hermitian flatband lattice  

在线阅读下载全文

作  者:刘通 成书杰 Tong Liu;Shujie Cheng(School of Science,Nanjing University of Posts and Telecommunications,Nanjing 210003,China;Department of Physics,Zhejiang Normal University,Jinhua 321004,China)

机构地区:[1]School of Science,Nanjing University of Posts and Telecommunications,Nanjing 210003,China [2]Department of Physics,Zhejiang Normal University,Jinhua 321004,China

出  处:《Chinese Physics B》2023年第2期417-420,共4页中国物理B(英文版)

基  金:supported by the Natural Science Foundation of Jiangsu Province, China (Grant No. BK20200737);NUPTSF (Grant Nos. NY220090 and NY220208);the National Natural Science Foundation of China (Grant No. 12074064);the Innovation Research Project of Jiangsu Province, China (Grant No. JSSCBS20210521);China Postdoctoral Science Foundation (Grant No. 2022M721693)。

摘  要:We study the cross-stitch flatband lattice subject to the quasiperiodic complex potential exp(ix). We firstly identify the exact expression of quadratic mobility edges through analytical calculation, then verify the theoretical predictions by numerically calculating the inverse participation ratio. Further more, we study the relationship between the real–complex spectrum transition and the localization–delocalization transition, and demonstrate that mobility edges in this non-Hermitian model not only separate localized from extended states but also indicate the coexistence of complex and real spectrum.

关 键 词:NON-HERMITIAN QUASIPERIODIC mobility edge 

分 类 号:O469[理学—凝聚态物理]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象