A GENERALIZED LIPSCHITZ SHADOWING PROPERTY FOR FLOWS  

在线阅读下载全文

作  者:韩波 Manseob LEE Bo HAN;Manseob LEE(LMIB of the Ministry of Education,School of Mathematical Sciences,Beihang University,Beijing,100191,China;Department of Marketing Big Data and Mathematics,Mokwon University,Daejeon,35349,Korea)

机构地区:[1]LMIB of the Ministry of Education,School of Mathematical Sciences,Beihang University,Beijing,100191,China [2]Department of Marketing Big Data and Mathematics,Mokwon University,Daejeon,35349,Korea

出  处:《Acta Mathematica Scientia》2023年第1期259-288,共30页数学物理学报(B辑英文版)

基  金:supported by National Natural Science Foundation of China(12071018);Fundamental Research Funds for the Central Universities;supported by the National Research Foundation of Korea(NRF)funded by the Korea government(MIST)(2020R1F1A1A01051370)。

摘  要:In this paper,we define a generalized Lipschitz shadowing property for flows and prove that a flowΦgenerated by a C1vector field X on a closed Riemannian manifold M has this generalized Lipschitz shadowing property if and only if it is structurally stable.

关 键 词:FLOW Perron property HYPERBOLICITY generalized Lipschitz shadowing property structural stability 

分 类 号:O17[理学—数学]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象