检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:韩波 Manseob LEE Bo HAN;Manseob LEE(LMIB of the Ministry of Education,School of Mathematical Sciences,Beihang University,Beijing,100191,China;Department of Marketing Big Data and Mathematics,Mokwon University,Daejeon,35349,Korea)
机构地区:[1]LMIB of the Ministry of Education,School of Mathematical Sciences,Beihang University,Beijing,100191,China [2]Department of Marketing Big Data and Mathematics,Mokwon University,Daejeon,35349,Korea
出 处:《Acta Mathematica Scientia》2023年第1期259-288,共30页数学物理学报(B辑英文版)
基 金:supported by National Natural Science Foundation of China(12071018);Fundamental Research Funds for the Central Universities;supported by the National Research Foundation of Korea(NRF)funded by the Korea government(MIST)(2020R1F1A1A01051370)。
摘 要:In this paper,we define a generalized Lipschitz shadowing property for flows and prove that a flowΦgenerated by a C1vector field X on a closed Riemannian manifold M has this generalized Lipschitz shadowing property if and only if it is structurally stable.
关 键 词:FLOW Perron property HYPERBOLICITY generalized Lipschitz shadowing property structural stability
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.7