检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:狄华斐 容伟杰 Huafei DI;Weijie RONG(School of Mathematics and Information Science,Guangzhou University,Guangzhou,510006,China;Key Laboratory of Mathematics and Interdisciplinary Sciences of Guangdong Higher Education Institutes,Guangzhou University,Guangzhou,510006,China)
机构地区:[1]School of Mathematics and Information Science,Guangzhou University,Guangzhou,510006,China [2]Key Laboratory of Mathematics and Interdisciplinary Sciences of Guangdong Higher Education Institutes,Guangzhou University,Guangzhou,510006,China
出 处:《Acta Mathematica Scientia》2023年第1期324-348,共25页数学物理学报(B辑英文版)
基 金:supported by the Natural Science Foundation of China(11801108);the Natural Science Foundation of Guangdong Province(2021A1515010314);the Science and Technology Planning Project of Guangzhou City(202201010111)。
摘 要:This paper deals with the forward and backward problems for the nonlinear fractional pseudo-parabolic equation ut+(-Δ)^(s1)ut+β(-Δ)^(s2)u=F(u,x,t)subject o random Gaussian white noise for initial and final data.Under the suitable assumptions s1,s2andβ,we first show the ill-posedness of mild solutions for forward and backward problems in the sense of Hadamard,which are mainly driven by random noise.Moreover,we propose the Fourier truncation method for stabilizing the above ill-posed problems.We derive an error estimate between the exact solution and its regularized solution in an E‖·‖Hs22norm,and give some numerical examples illustrating the effect of above method.
关 键 词:regularized solution approximation forward/backward problems fractional Laplacian Gaussian white noise Fourier truncation method
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.222