A Robust Indoor Localization Algorithm Based on Polynomial Fitting and Gaussian Mixed Model  被引量:2

在线阅读下载全文

作  者:Long Cheng Peng Zhao Dacheng Wei Yan Wang 

机构地区:[1]Department of Computer and Communication Engineering,Northeastern University,Qinhuangdao 066004,China

出  处:《China Communications》2023年第2期179-197,共19页中国通信(英文版)

基  金:supported by the National Natural Science Foundation of China under Grant No.62273083 and No.61973069;Natural Science Foundation of Hebei Province under Grant No.F2020501012。

摘  要:Wireless sensor network(WSN)positioning has a good effect on indoor positioning,so it has received extensive attention in the field of positioning.Non-line-of sight(NLOS)is a primary challenge in indoor complex environment.In this paper,a robust localization algorithm based on Gaussian mixture model and fitting polynomial is proposed to solve the problem of NLOS error.Firstly,fitting polynomials are used to predict the measured values.The residuals of predicted and measured values are clustered by Gaussian mixture model(GMM).The LOS probability and NLOS probability are calculated according to the clustering centers.The measured values are filtered by Kalman filter(KF),variable parameter unscented Kalman filter(VPUKF)and variable parameter particle filter(VPPF)in turn.The distance value processed by KF and VPUKF and the distance value processed by KF,VPUKF and VPPF are combined according to probability.Finally,the maximum likelihood method is used to calculate the position coordinate estimation.Through simulation comparison,the proposed algorithm has better positioning accuracy than several comparison algorithms in this paper.And it shows strong robustness in strong NLOS environment.

关 键 词:wireless sensor network indoor localization NLOS environment gaussian mixture model(GMM) fitting polynomial 

分 类 号:TN925[电子电信—通信与信息系统] TP212[电子电信—信息与通信工程]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象