检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:周宇阳 Zhou Yuyang(SINOPEC Engineering Incorporation,Beijing,100101)
出 处:《石油化工设计》2023年第1期44-51,I0003,共9页Petrochemical Design
摘 要:催化裂化装置对炼厂生产效益关系重大,准确预测并优化其产品收率和生焦产率对提高装置效益,改善全厂总流程具有重要意义。通过采用深度学习中梯度树(GBDT)算法和机器学习中神经网络(ANN)算法,基于系统内多家炼厂的催化裂化装置生产数据,建立了收率预测模型,总结了针对生产数据的数据处理经验。结果表明:基于深度学习的梯度树算法在预测效率、准确性和稳定性更好,使用人工智能方法能基于大数据准确预测装置产品收率,有助于开展基于数据模型的装置操作优化和全厂总流程优化,提高全厂经济效益。Catalytic cracking unit has a significant impact on refinery production efficiency.Accurate prediction and optimization of its product yield and coke yield is important to improve the efficiency of the unit and the overall process flow of the refinery.In this paper,a yield prediction model was developed based on the production data from the FCC units in several refineries of SINOPEC by applying Gradient Boosting Decision Tree(GBDT)algorithm in deep learning algorithm and the neural network(ANN)algorithm to summarize the data processing experience for production data.The results show that the gradient tree algorithm based on deep learning performs better in prediction efficiency,accuracy and stability.Artificial intelligence methods can accurately predict product yield based on big data,help to carry out unit operation optimization and plant-wide overall process flow optimization based on data model,and improve plant-wide economic efficiency.
分 类 号:TE96[石油与天然气工程—石油机械设备] TP18[自动化与计算机技术—控制理论与控制工程]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.222