Design and Optimization of Winograd Convolution on Array Accelerator  被引量:1

在线阅读下载全文

作  者:Ji Lai Lixin Yang Dejian Li Chongfei Shen Xi Feng Jizeng Wei Yu Liu 

机构地区:[1]School of Microelectronics,Tianjin University,Tianjin 300072,China [2]Beijing Smart-Chip Microelectronics Technology Company Limited,Beijing 100192,China [3]College of Intellegence and Computing,Tianjin University,Tianjin 300072,China

出  处:《Journal of Beijing Institute of Technology》2023年第1期69-81,共13页北京理工大学学报(英文版)

基  金:supported by the Project of the State Grid Corporation of China in 2022(No.5700-201941501A-0-0-00);the National Natural Science Foundation of China(No.U21B2031).

摘  要:With the rapid development and popularization of artificial intelligence technology,convolutional neural network(CNN)is applied in many fields,and begins to replace most traditional algorithms and gradually deploys to terminal devices.However,the huge data movement and computational complexity of CNN bring huge power consumption and performance challenges to the hardware,which hinders the application of CNN in embedded devices such as smartphones and smart cars.This paper implements a convolutional neural network accelerator based on Winograd convolution algorithm on field-programmable gate array(FPGA).Firstly,a convolution kernel decomposition method for Winograd convolution is proposed.The convolution kernel larger than 3×3 is divided into multiple 3×3 convolution kernels for convolution operation,and the unsynchronized long convolution operation is processed.Then,we design Winograd convolution array and use configurable multiplier to flexibly realize multiplication for data with different accuracy.Experimental results on VGG16 and AlexNet network show that our accelerator has the most energy efficient and 101 times that of the CPU,5.8 times that of the GPU.At the same time,it has higher energy efficiency than other convolutional neural network accelerators.

关 键 词:convolutional neural network Winograd convolution algorithm ACCELERATOR 

分 类 号:TP391.41[自动化与计算机技术—计算机应用技术] TP183[自动化与计算机技术—计算机科学与技术]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象