An Improved Deadbeat Predictive Current Control Method for SPMSM Drives with a Novel Adaptive Disturbance Observer  

在线阅读下载全文

作  者:Shuo Zhang Lingding Lei Chengning Zhang Tian Liu Shuli Wang 

机构地区:[1]School of Mechanical Engineering,Beijing Institute of Technology,Beijing 100081,China [2]School of Artificial Intelligence,Shenyang Aerospace University,Shenyang 110136,China

出  处:《Journal of Beijing Institute of Technology》2023年第1期107-123,共17页北京理工大学学报(英文版)

基  金:supported by the National Natural Science Foundation of China(No.52005037).

摘  要:To improve the dynamic performance of conventional deadbeat predictive current control(DPCC)under parameter mismatch,especially eliminate the current overshoot and oscillation during torque mutation,it is necessary to enhance the robustness of DPCC against various working conditions.However,the disturbance from parameter mismatch can deteriorate the dynamic performance.To deal with the above problem,firstly,traditional DPCC and the parameter sensitivity of DPCC are introduced and analyzed.Secondly,an extended state observer(ESO)combined with DPCC method is proposed,which can observe and suppress the disturbance due to various parameter mismatch.Thirdly,to improve the accuracy and stability of ESO,an adaptive extended state observer(AESO)using fuzzy controller based on ESO,is presented,and combined with DPCC method.The improved DPCC-AESO can switch the value of gain coefficients with fuzzy control,accelerating the current response speed and avoid the overshoot and oscillation,which improves the robustness and stability performance of SPMSM.Finally,the three methods,as well as conventional DPCC method,DPCC-ESO method,DPCC-AESO method,are comparatively analyzed in this paper.The effectiveness of the proposed two methods are verified by simulation and experimental results.

关 键 词:deadbeat predictive current control(DPCC) surface-mounted permanent magnet synchronous machine(SPMSM) extended state observer(ESO) fuzzy controller dynamic performance OVERSHOOT 

分 类 号:TM341[电气工程—电机]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象