Strong observability as a sufficient condition for non-singularity and lossless convexification in optimal control with mixed constraints  

在线阅读下载全文

作  者:Sheril Kunhippurayil Matthew W.Harris 

机构地区:[1]Torc Robotics,Inc.,405 Partnership Drive,Blacksburg 24060,Virginia,USA [2]Department of Mechanical and Aerospace Engineering,Utah State University,4130 Old Main Hill,Logan 84322,Utah,USA

出  处:《Control Theory and Technology》2022年第4期475-487,共13页控制理论与技术(英文版)

基  金:The second author was partially funded by ONR Grant N00014-22-1-2131.

摘  要:This paper analyzes optimal control problems with linear time-varying dynamics defined on a smooth manifold in addition to mixed constraints and pure control constraints.The main contribution is the identification of sufficient conditions for the optimal controls to be non-singular,which enables exact(or lossless)convex relaxations of the control constraints.The problem is analyzed in a geometric framework using a recent maximum principle on manifolds,and it is shown that strong observability of the dual system on the cotangent space is the key condition.Two minimum time problems are analyzed and solved.A minimum fuel planetary descent problem is then analyzed and relaxed to a convex form.Convexity enables its efficient solution in less than one second without any initial guess.

关 键 词:Optimal control Strong observability Lossless convexification 

分 类 号:O17[理学—数学]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象