检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:Sheril Kunhippurayil Matthew W.Harris
机构地区:[1]Torc Robotics,Inc.,405 Partnership Drive,Blacksburg 24060,Virginia,USA [2]Department of Mechanical and Aerospace Engineering,Utah State University,4130 Old Main Hill,Logan 84322,Utah,USA
出 处:《Control Theory and Technology》2022年第4期475-487,共13页控制理论与技术(英文版)
基 金:The second author was partially funded by ONR Grant N00014-22-1-2131.
摘 要:This paper analyzes optimal control problems with linear time-varying dynamics defined on a smooth manifold in addition to mixed constraints and pure control constraints.The main contribution is the identification of sufficient conditions for the optimal controls to be non-singular,which enables exact(or lossless)convex relaxations of the control constraints.The problem is analyzed in a geometric framework using a recent maximum principle on manifolds,and it is shown that strong observability of the dual system on the cotangent space is the key condition.Two minimum time problems are analyzed and solved.A minimum fuel planetary descent problem is then analyzed and relaxed to a convex form.Convexity enables its efficient solution in less than one second without any initial guess.
关 键 词:Optimal control Strong observability Lossless convexification
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.68