机构地区:[1]中北大学大数据学院山西省生物医学成像与影像大数据重点实验室,太原030051
出 处:《中国图象图形学报》2022年第12期3622-3636,共15页Journal of Image and Graphics
摘 要:目的针对目前多模态医学图像融合方法深层特征提取能力不足,部分模态特征被忽略的问题,提出了基于U-Net3+与跨模态注意力块的双鉴别器生成对抗网络医学图像融合算法(U-Net3+and cross-modal attention block dual-discriminator generative adversal network,UC-DDGAN)。方法结合U-Net3+可用很少的参数提取深层特征、跨模态注意力块可提取两模态特征的特点,构建UC-DDGAN网络框架。UC-DDGAN包含一个生成器和两个鉴别器,生成器包括特征提取和特征融合。特征提取部分将跨模态注意力块嵌入到U-Net3+下采样提取图像深层特征的路径上,提取跨模态特征与提取深层特征交替进行,得到各层复合特征图,将其进行通道叠加、降维后上采样,输出包含两模态全尺度深层特征的特征图。特征融合部分通过将特征图在通道上进行拼接得到融合图像。双鉴别器分别对不同分布的源图像进行针对性鉴别。损失函数引入梯度损失,将其与像素损失加权优化生成器。结果将UC-DDGAN与5种经典的图像融合方法在美国哈佛医学院公开的脑部疾病图像数据集上进行实验对比,其融合图像在空间频率(spatial frequency,SF)、结构相似性(structural similarity,SSIM)、边缘信息传递因子(degree of edge information,Q^(AB/F))、相关系数(correlation coefficient,CC)和差异相关性(the sum of the correlations of differences,SCD)等指标上均有提高,SF较DDcGAN(dual discriminator generation adversative network)提高了5.87%,SSIM较FusionGAN(fusion generative adversarial network)提高了8%,Q^(AB/F)较FusionGAN提高了12.66%,CC较DDcGAN提高了14.47%,SCD较DDcGAN提高了14.48%。结论UC-DDGAN生成的融合图像具有丰富深层特征和两模态关键特征,其主观视觉效果和客观评价指标均优于对比方法,为临床诊断提供了帮助。Objective Multi-modal medical image fusion tends to get more detailed features beyond single modal defection.The deep features of lesions are essential for clinical diagnosis.However,current multi-modal medical image fusion methods are challenged to capture the deep features.The integrity of fusion image is affected when extracting features from a single modal only.In recent years,deep learning technique is developed in image processing,and generative adversarial network(GAN),as an important branch of deep learning,has been widely used in image fusion.GAN not only reduces information loss but also highlights key features through information confrontation between different original images.The deep feature extraction ability of current multi-modal medical image fusion methods is insufficient and some modal features are ignored.We develop a medical image fusion method based on the improved U-Net3+and cross-modal attention blocks in combination with dual discriminator generation adversative network(UC-DDGAN).Method The UC-DDGAN image fusion modal is mainly composed of full scale connected U-Net3+network structure and two modal features integrated cross-modal attention blocks.The U-Net3+network can extract deep features,and the cross-modal attention blocks can extract different modal features in terms of the correlation between images.Computed tomography(CT)and magnetic resonance(MR)can be fused through the trained UC-DDGAN,which has a generator and two discriminators.The generator is used to extract the deep features of image and generate fusion image.The generator includes two parts of feature extraction and feature fusion.In the feature extraction part,the encoding and decoding of coordinated U-Net3+network complete feature extraction.In the coding stage,the input image is down-sampled four times to extract features,and cross-modal attention blocks are added after each down-sampling to obtain two modal composite feature maps.Cross-modal attention block not only calculates self-attention in a single image,but also e
关 键 词:U-Net3+ 跨模态注意力块 双鉴别器生成对抗网络 梯度损失 多模态医学图像融合
分 类 号:TP391[自动化与计算机技术—计算机应用技术]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...