基于Kubernetes的多云网络成本优化模型  

Cost optimization model for multi-cloud network based on Kubernetes

在线阅读下载全文

作  者:高明[1] 刘铭 陈泱婷 王伟明[1] GAO Ming;LIU Ming;CHEN Yangting;WANG Weiming(School of Information and Electronic Engineering,Zhejiang Gongshang University,Hangzhou 310018,China)

机构地区:[1]浙江工商大学信息与电子工程学院,浙江杭州310018

出  处:《电信科学》2023年第2期71-82,共12页Telecommunications Science

基  金:国家自然科学基金资助项目(No.61871468);浙江省基础公益研究计划项目(No.LGG20F010015);浙江省新型网络标准与应用技术重点实验室基金资助项目(No.2013E10012)。

摘  要:以Kubernetes为代表的云原生编排系统在多云环境中被云租户广泛使用,随之而来的网络观测性问题愈发突出,跨云跨地区的网络流量成本尤为突出。在Kubernetes中引入扩展的伯克利数据包过滤器(extended Berkeley packet filter,eBPF)技术采集操作系统内核态的网络数据特征解决网络观测问题,随后将网络数据特征建模为二次分配问题(quadratic assignment problem,QAP),使用启发式搜索与随机搜索组合的方法在实时计算的场景下求得最佳近优解。此模型在网络资源成本优化中优于Kubernetes原生调度器中仅基于计算资源的调度策略,在可控范围内增加了调度链路的复杂度,有效降低了多云多地区部署环境中的网络资源成本。The cloud-native scheduling system,represented by Kubernetes,is widely used by cloud tenants in a mul-ti-cloud environment.The problem of network observation becomes more and more serious,especially the cost of network traffic across cloud and region.In Kubernetes,the eBPF technology was introduced to collect the network data features of kernel state of operating system to solve the network observation problem,and then the network data features were modeled as QAP,a combination of heuristic and stochastic optimization was used to obtain the best near optimal solution in a real-time computing scenario.This model is superior to the Kubernetes native scheduler in the cost optimization of network resources,which is based on the scheduling strategy of computing resources only,and increases the complexity of scheduling links in a controllable range,effectively reduces the cost of network re-sources in a multi-cloud area deployment environment.

关 键 词:Kubernetes eBPF 多云网络 二次分配问题 

分 类 号:TP393[自动化与计算机技术—计算机应用技术]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象