检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:叶春[1,2] 刘莹[1] 刘继忠[1] 舒时富[2] 李艳大[2] 吴罗发[2] YE Chun;LIU Ying;LIU Jizhong;SHU Shifu;LI Yanda;WU Luofa(School of Advanced Manufacturing,Nanchang University,Nanchang 330038,China;Institute of Agricultural Engineering/Jiangxi Province Engineering Research Center of Intelligent Agricultural Machinery Equipment/Jiangxi Province Engineering Research Center of Information Technology in Agriculture,Jiangxi Academy of Agricultural Sciences,Nanchang 330200,China)
机构地区:[1]南昌大学先进制造学院,南昌330038 [2]江西省农业科学院农业工程研究所/江西省智能农机装备工程研究中心/江西省农业信息化工程技术研究中心,南昌330200
出 处:《中国农业大学学报》2023年第1期39-47,共9页Journal of China Agricultural University
基 金:国家自然科学基金项目(41961048);江西省重点研发计划项目(20212BBF61013,20212BBF63040,20202BBFL63046,20192BBF60052);江西省国家级高层次人才创新创业项目;江西省“双千计划”项目联合资助。
摘 要:为采用数码相机拍摄的水稻冠层图像来估测作物的氮素含量。以自然环境下获得的水稻冠层图像为研究对象,提出一种基于图像纹理色彩特征(LBPHSV)和ResNet50网络融合算法的氮素含量预测方法。LBPHSV+ResNet50融合算法是通过运用LBP算子和HSV颜色空间矩阵提取图像特征参数,将提取到的融合特征集作为ResNet50模型输入以加强对作物氮素营养的表征,并将预测结果与常用的多元线性回归、随机森林(RF)、支持向量回归模型、多层感知机、卷积神经网络、长短记忆网络(LSTM)及组合模型预测结果进行对比分析。结果显示:相比于浅层机器学习模型,深度学习算法能显著提高预测模型的准确率;LBPHSV+ResNet50融合模型的预测能力和泛化能力达到最优,R^(2)和RMSE分别为0.97、0.02。相比于RF、LBP+LSTM、ResNet50,新模型的R^(2)分别提升了16.36%、9.72%、16.55%和1.13%,RMSE分别下降了0.35、0.46、0.05和0.002。因此,LBPHSV+ResNet50融合模型在预测水稻氮素含量时可提供令人满意的性能,能够满足对水稻氮素营养无损精准监测的农业需求。Nitrogen is an important indicator reflecting the nitrogen nutrition status of crops,and its content is closely related to crop growth and development,photosynthesis capacity,and crop yield.With the increasing maturity of image processing technology,choosing canopy images to estimate the nitrogen content of crops has become an essential technical means.This study takes the canopy images of rice growing under the natural environment as the research object and proposes a new method based on feature extraction and ResNet50 to predict the nitrogen content of rice.LBPHSV+ResNet50 fusion algorithm uses Local Binary Pattern-HSV fusion feature set as input,leaf area concentration(LNC)as output,and ResNet50 as regression prediction algorithm to enhance the characterization of crop nitrogen nutrition.Multiple Linear Regression,Random Forest(RF),Support Vector Regression,Multilayer Perception,Convolutional Neural Network and Long Short-Term Memory(LSTM)are adopted to establish the nitrogen content estimation model,respectively.The results show that:Compared with the machine learning model,the deep learning algorithm can significantly improve the prediction accuracy.The LBPHSV+ResNet50 model proposed in this study has the best prediction ability and generalization ability,and R^(2) and RMSE are 0.97 and 0.02,respectively.Compared with RF,LBP+LSTM,ResNet50 and LBP+ResNet50 fusion models,the R^(2) of LBPHSV+ResNet50 model increased by 16.36%,9.72%,16.55%,and 1.13%,and the RMSE decreased by 0.35,0.46,0.05 and 0.002,respectively.In conclusion,the LBPHSV+ResNet50 model provides satisfactory performance in predicting rice nitrogen content,and this model can meet the agricultural needs for non-destructive and accurate monitoring of nitrogen nutrition in rice.
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.200