检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:Xulin Hu Weiming Zhao Zhen Zhang Jianping Xie Jian He Jianfei Cao Qing Li Yajing Yan Chengdong Xiong Kainan Li
机构地区:[1]Clinical Medical College&Affiliated Hospital of Chengdu University,Chengdu University,Chengdu 610081,China [2]Chengdu Institute of Organic Chemistry,Chinese Academy of Sciences,Chengdu 610041,China [3]University of Chinese Academy of Sciences,Beijing 100049,China [4]College of Medical,Henan University of Science and Technology,Luoyang 471023,China [5]School of Materials and Environmental Engineering,Chengdu Technological University,Chengdu 610031,China
出 处:《Chinese Chemical Letters》2023年第1期221-224,共4页中国化学快报(英文版)
基 金:the sub project of the national major project generation method and application verification of personalized rehabilitation prescription for patients with balance(No.2019YFB1311403)。
摘 要:The biodegradable substitution materials for bone tissue engineering have been a research hotspot.As is known to all,the biodegradability,biocompatibility,mechanical properties and plasticity of the substitution materials are the important indicators for the application of implantation materials.In this article,we reported a novel binary substitution material by blending the poly(lactic-acid)-co-(trimethylenecarbonate)and poly(glycolic-acid)-co-(trimethylene-carbonate),which are both biodegradable polymers with the same segment of flexible trimethylene-carbonate in order to accelerate the degradation rate of poly(lactic-acid)-co-(trimethylene carbonate)substrate and improve its mechanical properties.Besides,we further fabricate the porous poly(lactic-acid)-co-(trimethylene-carbonate)/poly(glycolic-acid)-co-(trimethylene-carbonate)scaffolds with uniform microstructure by the 3D extrusion printing technology in a mild printing condition.The physicochemical properties of the poly(lactic-acid)-co-(trimethylenecarbonate)/poly(glycolic-acid)-co-(trimethylene-carbonate)and the 3D printing scaffolds were investigated by universal tensile dynamometer,fourier transform infrared reflection(FTIR),scanning electron microscope(SEM)and differential scanning calorimeter(DSC).Meanwhile,the degradability of the PLLATMC/GA-TMC was performed in vitro degradation assays.Compared with PLLA-TMC group,PLLA-TMC/GATMC groups maintained the decreasing Tg,higher degradation rate and initial mechanical performance.Furthermore,the PLLA-TMC/GA-TMC 3D printing scaffolds provided shape-memory ability at 37℃.In summary,the PLLA-TMC/GA-TMC can be regarded as an alternative substitution material for bone tissue engineering.
关 键 词:Bone scaffolds Biodegradable polymers 3D printed Shape memory Tissue engineering
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.62