检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:王旭[1] 宁晨伽 王文正 张伟伟[1] WANG Xu;NING Chenjia;WANG Wenzheng;ZHANG Weiwei(School of Aeronautics,Northwestern Polytechnical University,Xi’an 710072,China;School of Aeronautics and Astronautics,University of Electronic Science and Technology of China,Chengdu 611731,China)
机构地区:[1]西北工业大学航空学院,西安710072 [2]电子科技大学航空航天学院,成都611731
出 处:《空气动力学学报》2023年第2期12-20,I0001,共10页Acta Aerodynamica Sinica
摘 要:风洞试验和飞行试验是飞行器研制过程中进行气动性能分析与优化设计的重要手段,然而,在高超声速飞行条件下,真实气体效应、黏性干扰效应和尺度效应的复杂变化给气动数据精准预测带来巨大挑战。为了提升天地气动数据一致性,针对某外形飞行试验数据开展了典型对象的天地气动数据融合方法研究。结合数据挖掘的随机森林方法,本文提出了一种面向飞行试验的数据融合框架,通过引入地面风洞试验气动数据,实现了对复杂输入参数的特征分析与特征排序,进一步对不同飞行时刻下飞行试验的气动数据开展了交叉验证。结果表明随机森林的机器学习框架对风洞-飞行试验数据关联具有较好的预测与外推能力,可以有效提升气动数据预测精度,相关研究为复杂环境下气动数据多源融合提供了思路。Wind tunnel and flight tests are two of the most important methods for aerodynamic analyses and optimization design during the development of aircraft. However, under hypersonic flight conditions, the real gas effects, viscous interference effects, and multi-scale flow fields pose huge challenges to aerodynamic prediction.To improve the consistency of aerodynamic data between wind-tunnel and flight tests, an aerodynamic data fusion framework based on the random forest method for data mining is proposed and applied in the aerodynamic data fusion of a hypersonic aircraft. Feature analyses and ranking of aerodynamic data obtained by ground wind tunnel tests are conducted first. Then aerodynamic data in a flight envelop are cross-validated. Results show that the machine learning framework based on the random forest has good prediction and extrapolation capabilities for the correlation of aerodynamic data obtained by wind-tunnel and flight tests, and can effectively improve the prediction accuracy of aerodynamic data. The method provides a promising solution to the multi-source fusion of aerodynamic data in complex environments.
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.33