UNCONDITIONAL SUPERCONVERGENT ANALYSIS OF QUASI-WILSON ELEMENT FOR BENJAMIN-BONA-MAHONEY EQUATION  被引量:1

在线阅读下载全文

作  者:Xiangyu Shi Linzhang Lu 

机构地区:[1]Business School,Zhengzhou University,Zhengzhou 450001,China [2]School of Mathematical Sciences,Xiamen University,Xiamen 361005,China [3]School of Mathematical Sciences,Guizhou Normal University,Guiyang 550025,China

出  处:《Journal of Computational Mathematics》2023年第1期94-106,共13页计算数学(英文)

基  金:supported by the National Natural Science Foundation of China(No.11671105).

摘  要:This article aims to study the unconditional superconvergent behavior of nonconforming quadrilateral quasi-Wilson element for nonlinear Benjamin Bona Mahoney(BBM)equation.For the generalized rectangular meshes including rectangular mesh,deformed rectangular mesh and piecewise deformed rectangular mesh,by use of the special character of this element,that is,the conforming part(bilinear element)has high accuracy estimates on the generalized rectangular meshes and the consistency error can reach order O(h^(2)),one order higher than its interpolation error,the superconvergent estimates with respect to mesh size h are obtained in the broken H^(1)-norm for the semi-/fully-discrete schemes.A striking ingredient is that the restrictions between mesh size h and time stepτrequired in the previous works are removed.Finally,some numerical results are provided to confirm the theoretical analysis.

关 键 词:BBM equations Quasi-Wilson element Superconvergent behavior Semi-and fully-discrete schemes Unconditionally 

分 类 号:O17[理学—数学]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象