检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:WEN Juan DENG Yaqian PENG Wanli XUE Yiming
出 处:《Chinese Journal of Electronics》2023年第1期76-84,共9页电子学报(英文版)
基 金:supported by the National Natural Science Foundation of China (61872368, 61802410)。
摘 要:Deep learning based language models have improved generation-based linguistic steganography,posing a huge challenge for linguistic steganalysis.The existing neural-network-based linguistic steganalysis methods are incompetent to deal with complicated text because they only extract single-granularity features such as global or local text features.To fuse multi-granularity text features,we present a novel linguistic steganalysis method based on attentional bidirectional long-shortterm-memory(BiLSTM) and short-cut dense convolutional neural network(CNN).The BiLSTM equipped with the scaled dot-product attention mechanism is used to capture the long dependency representations of the input sentence.The CNN with the short-cut and dense connection is exploited to extract sufficient local semantic features from the word embedding matrix.We connect two structures in parallel,concatenate the long dependency representations and the local semantic features,and classify the stego and cover texts.The results of comparative experiments demonstrate that the proposed method is superior to the state-of-the-art linguistic steganalysis.
关 键 词:Information hiding Natural language processing Linguistic steganalysis Attentional BiLSTM Dense connection
分 类 号:TP391.1[自动化与计算机技术—计算机应用技术]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:3.138.188.86