检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
机构地区:[1]北京工商大学人工智能学院
出 处:《中国新通信》2023年第2期65-67,共3页China New Telecommunications
摘 要:随着互联网时代的数据爆炸,在短文本信息数量迅速增长的环境下,为了更好地进行中文本摘要模型的计算,本文针对短文本的文本特征提取和相似度计算进行了深入研究。本文将优化的TF-IDF模型和Word2Vec模型结合起来,进而提出一种兼顾短文本统计特征和语义特征的合并加权Word2Vec和TF-IDF的文本特征提取算法,将文本进行向量化表示;随后,在文本的相似度算法中,基于短文本的特征,选取了余弦相似度算法,对短文本间相似度值进行了有效计算。实验结果表明,使用TF-IDF和Word2Vec结合模型与传统单个模型相比,生成出的文摘准确性更高,质量更好。
关 键 词:文本特征 相似度 Word2Vec TF-IDF 余弦相似度
分 类 号:TP391.1[自动化与计算机技术—计算机应用技术]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.38