SPIDER:Speeding up Side-Channel Vulnerability Detection via Test Suite Reduction  

在线阅读下载全文

作  者:Fei Yan Rushan Wu Liqiang Zhang Yue Cao 

机构地区:[1]Key Laboratory of Aerospace Information Security and Trusted Computing,Ministry of Education,School of Cyber Science and Engineering,Wuhan University,Wuhan 430072,China

出  处:《Tsinghua Science and Technology》2023年第1期47-58,共12页清华大学学报(自然科学版(英文版)

基  金:supported in part by the National Natural Science Foundation of China (Nos.61272452 and 61872430);the National Key Basic Research and Development (973)Program of China (No.2014CB340601);the Key R&D Program of Hubei Province (No.2020BAA003);the Prospective Applied Research Program of Suzhou City (No.SYG201845).

摘  要:Side-channel attacks allow adversaries to infer sensitive information,such as cryptographic keys or private user data,by monitoring unintentional information leaks of running programs.Prior side-channel detection methods can identify numerous potential vulnerabilities in cryptographic implementations with a small amount of execution traces due to the high diffusion of secret inputs in crypto primitives.However,because non-cryptographic programs cover different paths under various sensitive inputs,extending existing tools for identifying information leaks to non-cryptographic applications suffers from either insufficient path coverage or redundant testing.To address these limitations,we propose a new dynamic analysis framework named SPIDER that uses fuzzing,execution profiling,and clustering for a high path coverage and test suite reduction,and then speeds up the dynamic analysis of side-channel vulnerability detection in non-cryptographic programs.We analyze eight non-cryptographic programs and ten cryptographic algorithms under SPIDER in a fully automated way,and our results confirm the effectiveness of test suite reduction and the vulnerability detection accuracy of the whole framework.

关 键 词:side-channel detection test suite reduction dynamic analysis 

分 类 号:TN9[电子电信—信息与通信工程]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象