检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:马月坤 张可心 高唱 MA Yuekun;ZHANG Kexin;GAO Chang(College of Artificial Intelligence,North China University of Science and Technology,Tangshan 063210,Hebei,China;Hebei Provincial Key Laboratory of Industrial Intelligent Perception,North China University of Science and Technology,Tangshan 063210,Hebei,China;School of Computer&Communication Engineering,University of Science and Technology Beijing,Beijing 100083,China;Beijing Key Laboratory of Knowledge Engineering for Materials Science,Beijing 100083,China)
机构地区:[1]华北理工大学人工智能学院,河北唐山063210 [2]华北理工大学河北省工业智能感知重点实验室,河北唐山063210 [3]北京科技大学计算机与通信工程学院,北京100083 [4]材料领域知识工程北京市重点实验室,北京100083
出 处:《计算机工程》2023年第3期280-287,295,共9页Computer Engineering
基 金:中央高校基本科研业务费专项资金“新冠状肺炎中医智能辅助诊断系统”(FRF-DF-20-04);河北省“三三三人才工程”项目“类脑智能知识发现技术研究”(A201803082)。
摘 要:不同医家在辨证论治、辨证结果及用药习惯上存在差异,目前已有的知识图谱只对辨证论治知识进行关联与表达,不能直观地体现辨证论治差异。以6位医家的不孕症知识图谱为基础,通过引入“医家”与“关联强度”两种关系属性,构建一个整合多位医家辨证论治知识并直观体现差异性的知识图谱。在PageRank算法对不孕症数据进行预处理的基础上,通过对辨证论治过程自定义逻辑规则,利用概率软逻辑推理关联强度。建立基于关系图注意力网络的知识融合模型,考虑关系对实体含义表达的影响,通过关系图注意力网络层加权传播与聚合邻居实体信息,得到更丰富的实体向量表示从而实现不孕症知识融合。实验结果表明,该模型具有较好的融合能力,在朱南孙-钱伯煊数据集上Hit@1、Hit@10、Hit@30、MeanRank均取得较好结果,分别达到45.63%、60.85%、91.55%、0.564。通过构建体现辨证论治差异的不孕症知识图谱,可以系统地建立多位医家辨证论治知识之间的关联,对中医个性化知识的传承与发展具有重要意义。Variations can be observed between the dialectical results and medication treatment of doctors because doctors differentiate and treat syndromes differently.At present,existing knowledge graphs can only relate and express formulated dialectical knowledge but cannot intuitively reflect the differences in syndrome differentiation and treatment between doctors.In this study,a knowledge graph representing information on infertility integrating the knowledge on syndrome differentiation and treatment of six doctors is constructed by introducing relationship attributes indicating individual doctors and the strength of association between knowledge items.First,custom logic rules are defined for the process of syndrome differentiation and treatment;association strength is deduced by applying probabilistic soft logic based on the data describing pretreatment examinations for infertility using the PageRank algorithm.Second,this paper presents a knowledge fusion model based on a relational graph attention network;it is designed to consider the influence of relationships on expressions of the meaning of entities and to obtain a richer entity vector representation to fuse infertility knowledge by employing weighted propagation and aggregation of neighboring entity information through a relational graph attention network layer.The experimental results show that the proposed model exhibits good fusion ability and achieves optimal performance,reaching 45.63%,60.85%,91.55%,and 0.564 in terms of Hit@1,Hit@10,Hit@30,and MeanRank,respectively,on the Zhu Nansun-Qian Boxuan dataset.Thus,an infertility knowledge graph reflecting the differences in syndrome differentiation and treatment is constructed to systematically establish the associations between the knowledge provided by multiple doctors.The findings of this work are highly relevant for the inheritance and development of personalized knowledge in Traditional Chinese Medicine(TCM).
关 键 词:知识图谱 辨证论治 不孕症 概率软逻辑 图神经网络
分 类 号:TP391.1[自动化与计算机技术—计算机应用技术]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:3.145.45.170