检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:刘伟琪 陈波[1,2] 葛盼猛 张晓玲 LIU Weiqi;CHEN Bo;GE Panmeng;ZHANG Xiaoling(College of Water Conservancy and Hydropower Engineering,Hohai University,Nanjing 210098,China;State Key Laboratory of Hydrology-Water Resources and Hydraulic Engineering,Hohai University,Nanjing 210098,China;Shandong Huacheng Engineering Consulting and Supervision Co.,Ltd.,Gaomi 261500,China)
机构地区:[1]河海大学水利水电学院,江苏南京210098 [2]河海大学水文水资源与水利工程科学国家重点实验室,江苏南京210098 [3]山东省华诚工程咨询监理有限公司,山东高密261500
出 处:《水利水电科技进展》2023年第2期102-108,共7页Advances in Science and Technology of Water Resources
基 金:国家自然科学基金(52079049);国家自然科学基金重点项目(51739003)。
摘 要:为解决传统单测点监控模型未考虑多测点间的内在关联,难以反映高拱坝变形区域分布特征的问题,提出了基于聚类分区和多输出最小二乘支持向量回归机(MO-LSSVR)的高拱坝变形预测模型。模型基于测点之间的复合相似性指标,借助层次凝聚聚类(HAC)算法实现空间测点的聚类分区,再利用融合测点关联特性的MO-LSSVR对分区内多测点进行建模。工程实例验证表明,模型聚类分区结果与坝体变形空间分布特征较吻合,具有较高的准确性和稳健性,为从多测点关联维度预测坝体变形和监控大坝整体安全性态提供了一种新方法。To solve the problem that the internal correlation between multiple measuring points cannot be considered by traditional single measuring point monitoring models,which is difficult to reflect the regional characteristics of high arch dam deformation in space.A high arch dam deformation prediction model based on clustering partition and a multi-output least square support vector regression machine(MO-LSSVR)algorithm is proposed.Based on the composite similarity index between the measuring points,the clustering partition of spatial correlation measuring points is realized by hierarchical agglomerative clustering(HAC)algorithm.The MO-LSSVR algorithm integrating the correlation characteristics of measuring points is then used to model the points in the partition.The engineering example results show that the clustering partition results are consistent with the spatial distribution characteristics of dam deformation.The MO-LSSVR model based on the reasonable partition results has high accuracy and robustness,which provides a new method to accurately predict the dam deformation and monitoring the overall safety state of the dam from the multi-measuring points correlation dimension.
分 类 号:TV698.1[水利工程—水利水电工程]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:18.224.44.46