融合语义差别和流型学习的偏标记学习方法  

Partial label learning by semantic difference and manifold learning

在线阅读下载全文

作  者:赵亮 肖燕珊[1] 刘波[2] 古慧敏 Zhao Liang;Xiao Yanshan;Liu Bo;Gu Huimin(School of Computers,Guangdong University of Technology,Guangzhou 510000,China;School of Automation,Guangdong University of Technology,Guangzhou 510000,China)

机构地区:[1]广东工业大学计算机学院,广州510000 [2]广东工业大学自动化学院,广州510000

出  处:《计算机应用研究》2023年第3期760-765,共6页Application Research of Computers

基  金:国家自然科学基金资助项目(62076074)。

摘  要:偏标记学习是一种重要的弱监督学习框架。在偏标记学习中,每个实例与一组候选标记相关联,它的真实标记隐藏在候选标记集合中,且在学习过程中不可获知。为了消除候选标记对学习过程的影响,提出了一种融合实例语义差别最大化和流型学习的偏标记学习方法(partial label learning by semantic difference and manifold learning, PL-SDML)。该方法是一个两阶段的方法:在训练阶段,基于实例的语义差别最大化准则和流型学习方法为训练实例生成标记置信度;在预测阶段,使用基于最近邻投票的方法为未知实例预测标记类别。在四组人工改造的UCI数据集中,在平均70%的情况下优于其他对比算法。在四组真实偏标记数据集中,相比其他对比算法,取得了0.3%~13.8%的性能提升。Partial label learning is a weakly supervised learning framework. In partial label learning, each instance is associa-ted with a set of candidate labels, and its ground-truth label is unknown to us during the training process. In order to eliminate the ambiguous of candidate labels, this paper put forward a novel partial label learning by semantic difference and manifold learning(PL-SDML) method, which combined the semantic difference maximization criterion of instances and manifold lear-ning for partial label learning. The PL-SDML method was a two-stage method that used semantic difference maximization criterion of instances and manifold learning to generate the labeling confidence for training instances in the training phase. Then, PL-SDML made predicts for unseen instances via a nearest neighbor voting-based approach in the predict phase. On the UCI datasets, PL-SDML is superior to other comparison algorithms in 70% cases. On the four real-world datasets, the classification performance of PL-SDML improves by 0.3%~13.8% compared with other baselines.

关 键 词:偏标记学习 流型学习 语义差别 

分 类 号:TP181[自动化与计算机技术—控制理论与控制工程]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象