检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:陆建英[1] 沈文娟[1] 顾莹[1] 沈琳霞 张叶群 袁金丹[1] 张芝芝 许春芳[1] 朱锦舟 Jian-ying Lu;Wen-juan Shen;Ying Gu;Lin-xia Shen;Ye-qun Zhang;Jin-dan Yuan;Zhi-zhi Zhang;Chun-fang Xu;Jin-zhou Zhu(Department of Gastroenterology,the First Affiliated Hospital of Soochow University,Suzhou,Jiangsu 215000,China)
机构地区:[1]苏州大学附属第一医院消化内科,江苏苏州215000
出 处:《中国内镜杂志》2023年第2期1-7,共7页China Journal of Endoscopy
基 金:国家自然科学基金(No:82000540);苏州市科技计划(No:SKY2021038);苏州市科教兴卫项目(No:KJXW2019001)。
摘 要:目的建立内镜下内痔诊断及危险分级的深度学习模型,探讨人工智能辅助内镜下内痔诊疗的可行性。方法收集该院内镜中心的肛齿状线上倒镜图片,分为内痔组和正常组(A任务);根据LDRf分级标准,将内痔组进一步分为Rf0组、Rf1组和Rf2组(B任务)。选取基于卷积神经网络(CNN)框架的Xception、ResNet和EfficientNet,以及基于Transformer框架的ViT和ConvMixer等5个神经网络,建立针对A、B两项计算机视觉任务的深度学习模型。模型评价指标包括准确率、召回率、精确度、F1值和读片时间。将深度学习模型的读片表现与两位不同年资内镜医生进行比较。结果5种深度学习模型在A与B任务测试集中皆展现出较好的准确性。其中,最优模型为ConvMixer,准确性最高(0.961和0.911),其次为EfficientNet(0.956和0.901),均优于高年资内镜医生(0.952和0.881)和低年资内镜医生(0.913和0.832)。同时,所有深度学习模型在验证集中读片用时均<10 s,速度快于内镜医生(均>300 s)。此外,笔者采用梯度加权分类激活映射(Grad-CAM)方法突出图像中对模型判断较重要的区域。结论建立的内痔诊断及危险分级的深度学习模型,其表现优于内镜医生。基于深度学习的计算机视觉模型可辅助内镜医师进行内痔诊断和分级,展现出潜在的临床应用前景。Objective To develop deep learning models for the diagnosis and risk stratification of internal hemorrhoids in endoscopy.Methods Endoscopic images in upper anus dentate line were collected,which were divided into normal group and internal hemorrhoids group(Task A).Based on the LDRf standard,internal hemorrhoids group was further classified into Rf0,Rf1 and Rf2(Task B).Five deep learning models,included:Xception,ResNet,EfficientNet(based on CNNs architecture)and ViT,ConvMixer(Transformer architecture),were chosen to be trained on the two computer vision tasks.The models were evaluated by accuracy,recall,precision,F1and prediction time.Their performances were compared with two endoscopists.Results The five models showed good performance in the validation dataset of the two tasks.The best was the ConvMixer model(accuracy 0.961 in Task A and 0.911 in Task B),followed by the EfficientNet model(0.956 and 0.901),which were both higher than the endoscopists(senior 0.952 and 0.881;junior 0.913 and 0.832).Meanwhile,in terms of prediction time in the validation dataset,all models(<10 s)cost significantly less time than the endoscopists(>300 s).Furthermore,the Grad-CAM promoted model’s visualization and explanation.Conclusion This study trained deep learning models to diagnose and stratify internal hemorrhoids in endoscopy,whose performance was better than endoscopists.Computer vision models,based on deep learning,could assist endoscopists to diagnose and stratify internal hemorrhoids,which show promise in future clinical practice.
关 键 词:深度学习 内痔 消化内镜 LDRf分级 梯度加权分类激活映射
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.30