检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:Fei LV Jia YU Jun ZHANG Peng YU Da-wei TONG Bin-ping WU
出 处:《Journal of Zhejiang University-Science A(Applied Physics & Engineering)》2022年第12期1027-1046,共20页浙江大学学报(英文版)A辑(应用物理与工程)
基 金:supported by the Yalong River Joint Funds of the National Natural Science Foundation of China(No.U1965207);the National Natural Science Foundation of China(Nos.51839007,51779169,and 52009090)。
摘 要:Accurate prediction of drilling efficiency is critical for developing the earth-rock excavation schedule.The single machine learning(ML)prediction models usually suffer from problems including parameter sensitivity and overfitting.In addition,the influence of environmental and operational factors is often ignored.In response,a novel stacking-based ensemble learning method taking into account the combined effects of those factors is proposed.Through multiple comparison tests,four models,e Xtreme gradient boosting(XGBoost),random forest(RF),back propagation neural network(BPNN)as the base learners,and support vector regression(SVR)as the meta-learner,are selected for stacking.Furthermore,an improved cuckoo search optimization(ICSO)algorithm is developed for hyper-parameter optimization of the ensemble model.The application to a real-world project demonstrates that the proposed method outperforms the popular single ML method XGBoost and the ensemble model optimized by particle swarm optimization(PSO),with 16.43%and 4.88%improvements of mean absolute percentage error(MAPE),respectively.
关 键 词:Drilling efficiency PREDICTION Earth-rock excavation Stacking-based ensemble learning Improved cuckoo search optimization(ICSO)algorithm Comprehensive effects of various factors Hyper-parameter optimization
分 类 号:TU751[建筑科学—建筑技术科学] TP18[自动化与计算机技术—控制理论与控制工程]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.222