检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:傅晨恩 陈琼 FU Chen’en;CHEN Qiong(CETHIK Group Company Limited,Hangzhou 311100,China)
出 处:《计算机工程与应用》2023年第5期245-251,共7页Computer Engineering and Applications
基 金:国家科技重大专项(2018ZX01028102-004);国家自然科学基金(U20B2074)。
摘 要:在传统的地图可视化中,面对海量地图标记物展示会采用点聚合的方式,但是各类点聚合算法都是运行时计算,没有分层机制,在海量点的散开展示时,对于地图标记物堆叠没有过滤机制。针对这一问题,提出了分层的网格划分实现海量地图标记物聚散一体化解决方案。该方法对分层网格中心点构建K-D树索引,对海量点构建四叉树索引,通过索引和存储技术,实现了聚合的高效查询。对海量点散开时增加网格过滤,消除堆叠问题。在实验案例数据集上进行对比,结果表明,与传统的点聚合方案相比,在数据量大的情况下,计算性能显著提高,对海量标记物散开展示增加过滤算法,有效提升了用户体验。In traditional map visualization, point clustering is used in the display of massive map markers, but all kinds of point clustering algorithms are run-time calculations without hierarchical mechanism, and there is no filtering mechanism for map markers stack when a large number of points are scattered and displayed. In response to this problem, a solution of clustering and scattering of massive map markers is proposed based on hierarchical grid division. This method builds a K-D tree index for the center point of the hierarchical grid, and builds a quadtree index for the massive points. Through the index and storage technology, the efficient query of clustering is realized. Add grid filtering to eliminate stacking problems when massive points are scattered. The comparison is carried out on the experimental case data set, and the results show that, compared with the traditional point clustering scheme, the computing performance is significantly improved in the case of a large amount of data, and the filtering algorithm is added to the scattered display of massive markers, which effectively improves the user experience.
分 类 号:TP399[自动化与计算机技术—计算机应用技术]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.147