检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:田杰[1] 胡昊[1] 周华健 邹润 TIAN Jie;HU Hao;ZHOU Huajian;ZOU Run(School of Mechanical Engineering,Hefei University of Technology,Hefei 230009,China)
出 处:《机械工程师》2023年第3期16-18,共3页Mechanical Engineer
摘 要:为了实现柱形锂电池缺陷检测的实时性与高精度,提出一种基于改进YOLOv4的柱形锂电池表面缺陷检测算法。将主干网络由CSPDarkNet53替换为轻量化网络Mobile Netv1,使用K-means++算法对锂电池缺陷数据集先验框进行重新聚类,同时构建新的注意力机制ECSA模块关注重要信息。改进后的模型检测精度与检测速度均得到提升。In order to achieve real-time and high-precision defect detection of cylindrical lithium battery, this paper proposes a surface defect detection algorithm of cylindrical lithium battery based on improved YOLOv4. The backbone network CSPDarkNet53 is replaced by MobileNetv1, which is a lightweight network. K-means ++ algorithm is used to recluster the prior frames of lithium battery defect data set. At the same time, a new attention mechanism ECSA module is constructed to pay attention to important information. The detection accuracy and detection speed of the improved model are improved.
分 类 号:TM912[电气工程—电力电子与电力传动]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.30