Image-guided color mapping for categorical data visualization  被引量:2

在线阅读下载全文

作  者:Qian Zheng Min Lu Sicong Wu Ruizhen Hu Joel Lanir Hui Huang 

机构地区:[1]Suzhou University of Science and Technology,Suzhou 215009,China [2]Shenzhen University,Shenzhen 518052,China [3]The University of Haifa,Haifa 3498838,Israel

出  处:《Computational Visual Media》2022年第4期613-629,共17页计算可视媒体(英文版)

基  金:supported in parts by National Natural Science Foundation of China(U2001206,61872250);GD Talent Program(2019JC05X328);GD Natural Science Foundation(2020A0505100064,2021B1515020085);DEGP Key Project(2018KZDXM058);Shenzhen Science and Technology Key Program(RCJC20200714114435012,JCYJ20210324120213036).

摘  要:Appropriate color mapping for categorical data visualization can significantly facilitate the discovery of underlying data patterns and effectively bring out visual aesthetics.Some systems suggest pre-defined palettes for this task.However,a predefined color mapping is not always optimal,failing to consider users’needs for customization.Given an input cate-gorical data visualization and a reference image,we present an effective method to automatically generate a coloring that resembles the reference while allowing classes to be easily distinguished.We extract a color palette with high perceptual distance between the colors by sampling dominant and discriminable colors from the image’s color space.These colors are assigned to given classes by solving an integer quadratic program to optimize point distinctness of the given chart while preserving the color spatial relations in the source image.We show results on various coloring tasks,with a diverse set of new coloring appearances for the input data.We also compare our approach to state-of-the-art palettes in a controlled user study,which shows that our method achieves comparable performance in class discrimination,while being more similar to the source image.User feedback after using our system verifies its efficiency in automatically generating desirable colorings that meet the user’s expectations when choosing a reference.

关 键 词:color palette DISCRIMINABILITY IMAGE-GUIDED categorical data visualization 

分 类 号:TP391.41[自动化与计算机技术—计算机应用技术]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象