基于隐喻抽取技术的博物馆意象分析——以中国大运河博物馆为例  被引量:4

Museum Image Analysis Based on ZMET:Case Study of the China Grand Canal Museum

在线阅读下载全文

作  者:李永乐[1] 张智玮 Li Yongle;Zhang Zhiwei

机构地区:[1]江苏师范大学大运河研究院,苏徐州221116 [2]江苏师范大学历史文化与旅游学院,江苏徐州221116

出  处:《南京社会科学》2023年第1期140-148,共9页Nanjing Journal of Social Sciences

基  金:国家社科基金项目“明清运河沿线湖泊环境变迁与国家水资源管理体制”(19BZS104);江苏省文化和旅游科研重点课题“江苏世界级运河文化遗产旅游廊道深化研究”(21ZD05);江苏省高校优势学科建设工程项目的阶段性成果。

摘  要:基于观众视角,将“意象”概念引入博物馆研究领域,以中国大运河博物馆为例,运用隐喻抽取技术研究博物馆意象。遵循隐喻抽取技术的研究步骤与要求,首先通过深度访谈和文本分析,提取出15个起始构念、22个连接构念和15个终结构念,然后识别出所有的共识逻辑链,最终绘制出观众心智共识地图。研究发现,在观众心目中,中国大运河博物馆呈现四种意象,最主要的意象是“公共文化空间”,其次分别是“休闲旅游地”“学习教育地”“社会服务场所”。文旅融合背景下,博物馆要塑造、强化正面、积极的意象,需要打造新型公共文化空间,推动宜游化改造,改进知识教育和文化传播的方式,不断优化服务水平。Based on the perspective of visitors, this study introduces the concept of “Image” into the field of museum research, taking the China Grand Canal Museum as an example, and using Zaltman Metaphor Elicitation Technique(ZMET) to study the image perception of museum visitors. Following the research steps and requirements of ZMET, the 15 starting concepts, 22 connecting concepts and 15 final concepts of China Grand Canal Museum were first extracted through in-depth interviews and text analysis, and then all consensus logical chains were identified, and finally a consensus map of visitor image perception was drawn. The study found that in the eyes of the visitors, the China Grand Canal Museum has presented four kinds of images, the most important image was “public cultural space”, followed by “leisure tourist destination”, “learning and education place” and “social service place”. Under the background of cultural and tourism integration, in order to shape and strengthen positive images, museums should create a new public cultural space, promote the transformation of appropriate tourism, improve the way of knowledge education and cultural communication, constantly optimize the service level.

关 键 词:隐喻抽取技术 意象 大运河 博物馆 

分 类 号:G124[文化科学]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象