检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:史浩琛 金致远 唐文婧 王静[1] 蒋楷 夏伟 Shi Haochen;Jin Zhiyuan;Tang Wenjing;Wang Jing;Jiang Kai;Xia Wei(School of Physics and Technology,University of Jinan,Jinan 250022,China)
机构地区:[1]济南大学物理科学与技术学院,济南250022
出 处:《电子测量与仪器学报》2022年第11期79-90,共12页Journal of Electronic Measurement and Instrumentation
基 金:国家自然科学基金(62005094);山东省自然科学基金(ZR2021MF128);济南市引进创新团队项目(2018GXRC011);山东省工业技术研究院协同创新中心共建项目(CXZX2019007)资助。
摘 要:为了解决半导体制造领域缺陷检测中出现的检测效率低、错误率高、结果不稳定、成像精度低下导致无法精确地检测出不同种类的缺陷等问题,本文利用定制的CCD工业相机搭配高倍率的光学显微镜采集晶圆表面的扫描图像,结合改进的YOLOv4算法,实现了基于深度学习的高精度晶圆缺陷检测方法。实验表明,对于碳化硅晶圆缺陷,提出的方法模型可以识别各种复杂条件下的不同种类缺陷,具有良好的鲁棒性。对缺陷的平均识别精度达到99.24%,相较于YOLOv4-Tiny和原YOLOv4分别提升10.08%和1.92%。对缺陷的平均每图识别时间达到0.028 3 s,相较于基于Halcon软件方法和OpenCV模板匹配方法分别提升93.42%和90.52%,优于其他常规的晶圆缺陷检测方法,已实现在自主设计的验证系统和应用平台上稳定运行。In order to solve the semiconductor manufacturing defect detection with low efficiency, the error rate is high, the result is not stable, imaging accuracy is low and cannot accurately detect the problem such as different kinds of defects. In this paper, by using a custom CCD industrial camera with a high ratio of optical microscope scan images on the surface of the wafer, combined with the improved YOLOv4 algorithm, a high precision wafer defect detection method based on deep learning is implemented. Experimental results show that the proposed model can identify different kinds of silicon carbide wafer defects under various complex conditions and has good robustness. The average accuracy of defect identification is 99.24%, which is about 10.08% and 1.92% higher than that of YOLOV4-Tiny and original YOLOv4, respectively. Compared with the Halcon-based method and OpenCV template matching method, the average recognition time of defects per graph reaches 0.028 3 s, which is about 93.42% and 90.52% higher than other conventional wafer defect detection methods and has realized stable operation in independently designed verification systems and application platform.
关 键 词:深度学习 晶圆缺陷检测 碳化硅晶圆 YOLOv4
分 类 号:TP391.41[自动化与计算机技术—计算机应用技术]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.30