基于灰色预测容错时钟同步算法  

Fault-Tolerant Clock Synchronization Algorithm Based on Grey Prediction

在线阅读下载全文

作  者:陆禹 张力[1] 张凤登[1] LU Yu;ZHANG Li;ZHANG Fengdeng(School of Optical-Electrical and Computer Engineering,University of Shanghai for Science and Technology,Shanghai 200093,China)

机构地区:[1]上海理工大学光电信息与计算机工程学院,上海200093

出  处:《电子科技》2023年第3期29-35,共7页Electronic Science and Technology

基  金:国家自然科学基金(71840003);上海市自然科学基金(15ZR1429300)。

摘  要:针对分布式实时系统中无主式时钟同步存在时钟拜占庭故障和节点通信链路丢失故障的问题,文中提出一种基于灰色预测容错时钟同步算法。该算法基于广播式通信网络LL模型,使用GM(1,1)的灰色预测方法对前轮次的校正偏差值进行分析,从而预测出该节点在故障伦次中的校正偏差值,再通过计算得到修正值。实验结果表明,文中提出的灰色预测算法能够容忍拜占庭故障,同时可克服节点通信链路丢失故障带来的问题,提升了FTA算法的普适性。通过数据对比分析结果表明,该算法的时钟同步精密度相比于原始算法提高了24.3%;相较于其他算法,文中算法在复杂度上也有一定的优势。In view of the problem of clock Byzantine failure and node communication link loss failure in the non-master clock synchronization in the distributed real-time system, a fault-tolerant clock synchronization algorithm based on gray prediction is proposed in this study. The proposed algorithm is based on the LL model of the broadcast communication network, and uses the gray prediction method of GM(1,1) to analyze the correction deviation value of the previous round, so as to predict the correction deviation value of the node in the failure order, and then obtain the correction value through calculation. The experimental results show that the gray prediction algorithm proposed in this study can tolerate Byzantine faults, and at the same time, it can overcome the problems caused by the failure of node communication link loss, and improve the universality of the FTA algorithm. The data comparison analysis results show that the clock synchronization precision of this algorithm is improved by 24.3% when compared with Original algorithm. At the same time, the algorithm complexity has certain advantages when compared with other algorithms.

关 键 词:分布式实时系统 无主式 时钟同步 拜占庭故障 通信链路丢失故障 灰色预测 容错 校正偏差值 

分 类 号:TN913[电子电信—通信与信息系统] TP311[电子电信—信息与通信工程]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象