检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:张琦[1,2,3] 谢升 钟再锡 ZHANG Qi;XIE Sheng;ZHONG Zaixi(State Environment Protection Key Laboratory of Eco-Industry,Northeastern University,Shenyang 110819,China;Institute for Frontier Technologies of Low-Carbon Steelmaking,Northeastern University,Shenyang 110819,China;Liaoning Province Engineering Research Center for Frontier Technologies of Low-Carbon Steelmaking,Shenyang 110819,China)
机构地区:[1]东北大学国家环境保护生态工业重点实验室,辽宁沈阳110819 [2]东北大学低碳钢铁前沿技术研究院,辽宁沈阳110819 [3]辽宁省低碳钢铁前沿技术工程研究中心,辽宁沈阳110819
出 处:《冶金自动化》2023年第1期101-111,共11页Metallurgical Industry Automation
基 金:国家重点研发计划项目(2020YFB1711102);辽宁省“兴辽英才计划”项目(XLYC2002072)。
摘 要:钢铁行业是国民经济的支柱产业,也是典型的资源、能源密集型产业。随着5G、大数据、人工智能等新一代信息技术的发展,推进冶金能源管理向着数字化和智能化方向转型,有助于冶金行业节能减排和碳中和目标的实现。本文分析了冶金能源管理现状、存在的问题以及国内外能源管理数字化发展趋势。围绕钢铁生产过程能源管理数字化技术应用方法和案例,提出冶金企业能源管理数字化发展应从数据挖掘、机器学习和数字孪生角度深入。依靠数字挖掘技术,剖析不同系统、工序以及设备的能源数据特征,融合机器学习模型、数字孪生模型,实现冶金能源管理的智慧化发展,为冶金企业能源管理开展数字化探索与实践提供参考。The iron and steel industry with the resource and energy intensive feature is a pillar industry of national economy.With the development of new-generation information technologies such as 5G,big data,and artificial intelligence,the transformation of metallurgical energy management towards digitalization and intelligence will help the metallurgical industry achieve the goals of energy conservation,emission reduction and carbon neutrality.This paper analyzed the status quo of metallurgical energy management,the existing problems and the digital development trend of energy management at home and abroad.Focusing on the application methods and cases of energy management digital technology in the steel production process,it was proposed that the digital development of energy management in metallurgical enterprises should be deepened from the perspectives of data mining,machine learning and digital twins.Relying on digital mining technology,analyzing the energy data characteristics of different systems,processes and equipment,integrating machine learning models and digital twin models,realizing the intelligent development of metallurgical energy management,and providing reference for the digital exploration and practice of energy management in metallurgical enterprises.
分 类 号:TF083[冶金工程—冶金物理化学] F426.31[经济管理—产业经济] F49
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.222