Rapid Deformation Calculation for Large Reflector Antennas:A Surrogate Model Method  被引量:1

在线阅读下载全文

作  者:Zi-Han Zhang Qian Ye Li Fu Jin-Qing Wang Meng Guo-Xiang Zhi-Qiang Shen 

机构地区:[1]School of Mechanical Engineering,Shanghai Jiao Tong University,Shanghai 200240,China [2]Shanghai Astronomical Observatory,Chinese Academy of Sciences,Shanghai 200030,China

出  处:《Research in Astronomy and Astrophysics》2023年第1期4-17,共14页天文和天体物理学研究(英文版)

基  金:supported by the National Key Basic Research and Development Program of China No. 2021YFC2203501;the National Natural Science Foundation of China (project U1931137).

摘  要:The surface accuracy of the large-aperture reflector antenna has a significant influence on the observation efficiency.Recent researchers have focused on using the finite element(FE)simulation to study the effect of gravity and heat on the deformation distribution of the main reflector.However,the temperature distribution of the antenna is challenging to obtain,and it takes a long time for the FE simulation to carry out FE modeling and postprocessing.To address these limitations,this study presents a surrogate model based on Extreme Gradient Boosting(XGBoost)and deep Convolutional Neural Network(CNN)to get the deformation distribution of the main reflector quickly.In the design of the surrogate model,using the XGBoost algorithm and sparse sampling to solve the difficulty of obtaining the entire temperature distribution is first proposed,and then a deep CNN is developed for estimating deformation.Based on the effect of dynamic loads on the antenna structure,a diverse data set is generated to train and test the surrogate model.The results show that the surrogate model reduces the calculating time dramatically and can obtain the indistinguishable deformation compared to the FE simulation.This technique provides a valuable tool for temperature and deformation calculation of large-aperture antennas.

关 键 词:telescopes-methods analytical-methods NUMERICAL-METHODS data analysis 

分 类 号:TN823.27[电子电信—信息与通信工程]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象