检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:李笑冰 郭冉冉 周宇 刘康宁 赵佳 龙芬 吴元芳 李治明 Xiaobing Li;Ranran Guo;Yu Zhou;Kangning Liu;Jia Zhao;Fen Long;Yuanfang Wu;Zhiming Li(Key Laboratory of Quark and Lepton Physics(MOE)and Institute of Particle Physics,Central China Normal University,Wuhan 430079,China;University of California,Los Angeles,CA 90095,USA)
机构地区:[1]Key Laboratory of Quark and Lepton Physics(MOE)and Institute of Particle Physics,Central China Normal University,Wuhan 430079,China [2]University of California,Los Angeles,CA 90095,USA
出 处:《Chinese Physics C》2023年第3期138-145,共8页中国物理C(英文版)
基 金:Supported by the National Natural Science Foundation of China(12275102);the National Key Research and Development Program of China(2022YFA1604900)。
摘 要:Exploration of the QCD phase diagram and critical point is one of the main goals in current relativistic heavy-ion collisions.The QCD critical point is expected to belong to a three-dimensional(3D)Ising universality class.Machine learning techniques are found to be powerful in distinguishing different phases of matter and provide a new way to study the phase diagram.We investigate phase transitions in the 3D cubic Ising model using supervised learning methods.It is found that a 3D convolutional neural network can be trained to effectively predict physical quantities in different spin configurations.With a uniform neural network architecture,it can encode phases of matter and identify both second-and first-order phase transitions.The important features that discriminate different phases in the classification processes are investigated.These findings can help study and understand QCD phase transitions in relativistic heavy-ion collisions.
关 键 词:machine learning phase transition QCD critical point three-dimensional Ising universality class
分 类 号:O572.243[理学—粒子物理与原子核物理] TP181[理学—物理]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.222