检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:Xiao-Qi Han Sheng-Song Xu Zhen Feng Rong-Qiang He Zhong-Yi Lu
机构地区:[1]Department of Physics,Renmin University of China,Beijing 100872,China
出 处:《Chinese Physics Letters》2023年第2期50-54,共5页中国物理快报(英文版)
基 金:supported by the National Natural Science Foundation of China(Grant Nos.11874421 and 11934020)。
摘 要:A main task in condensed-matter physics is to recognize,classify,and characterize phases of matter and the corresponding phase transitions,for which machine learning provides a new class of research tools due to the remarkable development in computing power and algorithms.Despite much exploration in this new field,usually different methods and techniques are needed for different scenarios.Here,we present SimCLP:a simple framework for contrastive learning phases of matter,which is inspired by the recent development in contrastive learning of visual representations.We demonstrate the success of this framework on several representative systems,including non-interacting and quantum many-body,conventional and topological.SimCLP is flexible and free of usual burdens such as manual feature engineering and prior knowledge.The only prerequisite is to prepare enough state configurations.Furthermore,it can generate representation vectors and labels and hence help tackle other problems.SimCLP therefore paves an alternative way to the development of a generic tool for identifying unexplored phase transitions.
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.3