Framework for Contrastive Learning Phases of Matter Based on Visual Representations  

在线阅读下载全文

作  者:Xiao-Qi Han Sheng-Song Xu Zhen Feng Rong-Qiang He Zhong-Yi Lu 

机构地区:[1]Department of Physics,Renmin University of China,Beijing 100872,China

出  处:《Chinese Physics Letters》2023年第2期50-54,共5页中国物理快报(英文版)

基  金:supported by the National Natural Science Foundation of China(Grant Nos.11874421 and 11934020)。

摘  要:A main task in condensed-matter physics is to recognize,classify,and characterize phases of matter and the corresponding phase transitions,for which machine learning provides a new class of research tools due to the remarkable development in computing power and algorithms.Despite much exploration in this new field,usually different methods and techniques are needed for different scenarios.Here,we present SimCLP:a simple framework for contrastive learning phases of matter,which is inspired by the recent development in contrastive learning of visual representations.We demonstrate the success of this framework on several representative systems,including non-interacting and quantum many-body,conventional and topological.SimCLP is flexible and free of usual burdens such as manual feature engineering and prior knowledge.The only prerequisite is to prepare enough state configurations.Furthermore,it can generate representation vectors and labels and hence help tackle other problems.SimCLP therefore paves an alternative way to the development of a generic tool for identifying unexplored phase transitions.

关 键 词:VISUAL hence classify 

分 类 号:O469[理学—凝聚态物理] TP181[理学—电子物理学]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象