检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:张婧雯 马华隆 马军 胡梅雪 李启浩 陈胜 宁添姝 葛创新 刘晰 肖丽[2,4] 庄林[2,3] 张熠霄[1] 陈立桅 Jingwen Zhang;Hualong Ma;Jun Ma;Meixue Hu;Qihao Li;Sheng Chen;Tianshu Ning;Chuangxin Ge;Xi Liu;Li Xiao;Lin Zhuang;Yixiao Zhang;Liwei Chen(School of Chemistry and Chemical Engineering,in-situ Center for Physical Sciences,Frontiers Science Center for Transformative Molecules,Shanghai Jiao Tong University,Shanghai 200240,China;College of Chemistry and Molecular Sciences,Hubei Key Lab of Electrochemical Power Sources,Wuhan University,Wuhan 430072,China;The Institute for Advanced Studies,Wuhan University,Wuhan 430072,China;Sauvage Center for Molecular Sciences,Wuhan University,Wuhan 430072,China)
机构地区:[1]上海交通大学化学化工学院,变革性分子前沿科学中心,物质科学原位中心,上海200240 [2]武汉大学化学与分子科学学院,化学电源材料与技术湖北省重点实验室,武汉430072 [3]武汉大学高等研究院,武汉430072 [4]武汉大学索维奇国际分子科学研究中心,武汉430072
出 处:《物理化学学报》2023年第2期64-70,共7页Acta Physico-Chimica Sinica
基 金:国家自然科学基金(21991153,21991150)资助项目。
摘 要:燃料电池作为一种清洁高效的能量转换装置,被认为是构建未来社会可再生能源结构的关键一环。不同于质子交换膜燃料电池(PEMFC),碱性聚合物电解质燃料电池(APEFC)的出现使非贵金属催化剂的使用成为可能,因而受到了日益广泛的关注和研究。APEFC的关键结构是膜电极,主要由聚合物电解质膜和阴阳极(含催化层、气体扩散层)组成,膜电极是电化学反应发生的场所,其优劣直接决定着电池性能的好坏。因此,基于现有的碱性聚合物电解质及催化剂体系,如何构筑更加优化的膜电极结构,使APEFC发挥出更高的电池性能是亟待开展的研究。本文首先通过模板法在碱性聚合物电解质膜的表面构建出有序的锥形阵列,再将具有阵列结构的一侧作为阴极来构筑膜电极,同时,作为对比,制备了由无阵列结构的聚合物电解质膜构筑而成的膜电极,最后对基于两种不同膜电极的APEFC的电化学性能进行了对比研究。实验结果表明,锥形阵列结构可以将APEFC的峰值功率密度由1.04 W·cm^(−2)显著提高到1.48 W·cm^(−2),这主要归因于在APEFC的阴极侧具有锥形阵列结构的聚合物电解质膜的亲水性的提升和催化剂电化学活性面积的增加。本工作为碱性聚合物电解质燃料电池的膜电极结构设计与优化提供了新思路。Fuel cells are essential energy conversion devices for future renewable energy structures.Mainstream proton exchange membrane fuel cells(PEMFCs)generally exhibit satisfactory performance despite requiring noble metal catalysts to be stable in acidic environments.Alkaline polymer electrolyte fuel cells(APEFCs),in contrast,offer the benefit of employing nonnoble metal catalysts in fuel cells,but their overall performance and especially their long-term stability require further improvement.A critical component within APEFCs is the membrane electrode assembly(MEA),which comprises a hydroxide ion conductive polymer membrane,a cathode,and an anode(including a catalyst layer and a gas diffusion layer).MEA is where electrochemical reactions occur;thus,it plays a crucial role in determining fuel cell performance.Herein,the fabrication of a cone-shaped array on the surface of an alkaline polymer electrolyte membrane for improving the overall device performance is presented.The cone array was prepared using a sacrificial anodic aluminum oxide(AAO)template,and the array side of the polymer electrolyte was used as the cathode to construct the MEA,denoted as A-MEA.The control sample with no cone arrays on the polymer electrolyte surface is denoted as P-MEA.The Pt loadings on both the anode and cathode sides were approximately 0.2 mg·cm^(−2).APEFCs with A-MEA and P-MEA were separately assembled and tested in an 850e Fuel Cell Test System at a cell temperature of 80℃.Fully humidified hydrogen and oxygen were both supplied at a flow rate of 1000 mL·min^(−1).The back pressure for both the anode and the cathode was 0.2 MPa.As a result,the APEFC with A-MEA exhibited a higher peak power density than that of the APEFC with P-MEA(1.48 vs.1.04 W·cm^(−2)).The enhanced electrochemical performance of the APEFC with A-MEA was ascribed to the array-structured cathode,which improved the hydrophilicity of the polymer electrolyte membrane and increased the utilization efficiency of the catalyst.The hydrophilicity of the polymer elect
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.229