精细神经网络仿真方法研究进展  被引量:1

A review of detailed network simulation methods

在线阅读下载全文

作  者:张祎晨 黄铁军 Zhang Yichen;Huang Tiejun(School of Computer Science,PekingUniversity,Beijing100871,China;Institute forArtificial Intelligence,PekingUniversity,Beijing 100871,China)

机构地区:[1]北京大学计算机学院,北京100871 [2]北京大学人工智能研究院,北京100871

出  处:《中国图象图形学报》2023年第2期358-371,共14页Journal of Image and Graphics

基  金:科技创新2030—“新一代人工智能”重大项目(2021ZD0109803)。

摘  要:树突对大脑神经元实现不同的信息处理功能有着重要作用。精细神经元模型是一种对神经元树突以及离子通道的信息处理过程进行精细建模的模型,可以帮助科学家在实验条件的限制之外探索树突信息处理的特性。由精细神经元组成的精细神经网络模型可通过仿真对大脑的信息处理过程进行模拟,对于理解树突的信息处理机制、大脑神经网络功能背后的计算机理具有重要作用。然而,精细神经网络仿真需要进行大量计算,如何对精细神经网络进行高效仿真是一个具有挑战的研究问题。本文对精细神经网络仿真方法进行梳理,介绍了现有主流仿真平台与核心仿真算法,以及可进一步提升仿真效率的高效仿真方法。将具有代表性的高效仿真方法按照发展历程以及核心思路分为网络尺度并行方法、神经元尺度并行方法以及基于GPU(graphics processing unit)的并行仿真方法3类。对各类方法的核心思路进行总结,并对各类方法中代表性工作的细节进行分析介绍。随后对各类方法所具有的优劣势进行分析对比,对一些经典方法进行总结。最后根据高效仿真方法的发展趋势,对未来研究工作进行展望。Neurons in brain have complicated morphologies.Those tree-like components are called dendrites.Dendrites receive spikes from connected neurons and integrate all signals-received.Many experiments show that dendrites contain multiple types of ion channels,which can induce high nonlinearity in signal integration.The high nonlinearity makes dendrites become fundamental units in neuronal signal processing.So,understanding the mechanisms and function of dendrites in neurons and neural circuits becomes one core question in neuroscience.However,because of the highly complicated biophysical properties and limited experimental techniques,it’s hard to get further insights about dendritic mechanisms and functions in neural circuits.Biophysically detailed multi-compartmental models are typical models for modelling all biophysical details of neurons,including 1) dynamics of dendrites,2) ion channels,and 3) synapses.Detailed neuron models can be used to simulate the signal integration.Detailed network models can simulate biophysical mechanisms and network functions both,helping scientists explore the mechanisms behind different phenomena.However,detailed multi-compartmental neuron models has high computational complexity in simulation.When we simulate detailed networks,the computational complexity highly burdens current simulators.How to accelerate the simulation of detailed neural networks has been a challenging research topic for both neuroscience and computer science community.During last decades,lots of works try to use parallel computing techniques to achieve higher simulation efficiency.In this study,we review these high performance methods for detailed network simulation.First,we introduce typical detailed neuron simulators and their kernel simulation methods.Then we review those parallel methods that are used to accelerate detailed simulation.We classify these methods into three categories:1) network-level parallel methods;2) cellular-level parallel methods;and 3) GPU(graphics processing unit)-based parallel methods.N

关 键 词:神经形态计算 大脑仿真 树突计算 精细神经元模型 精细神经网络仿真 

分 类 号:TP301[自动化与计算机技术—计算机系统结构]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象