Influence of inter-grain cementation stiffness on the effective elastic properties of porous Bentheim sandstone  

在线阅读下载全文

作  者:Bin Chen Jiansheng Xiang John-Paul Latham 

机构地区:[1]Department of Earth Science and Engineering,Faculty of Engineering,Imperial College London,London,SW72BX,UK

出  处:《Journal of Rock Mechanics and Geotechnical Engineering》2023年第3期573-583,共11页岩石力学与岩土工程学报(英文版)

基  金:The authors would like to acknowledge the support of the EC project‘SURE-Novel Productivity Enhancement Concept for a Sustainable Utilization of a Geothermal Resource-RIA’(CEC 654662,H2020).

摘  要:Effective elastic properties of porous media are known to be significantly influenced by porosity.In this paper,we investigated the influence of another critical factor,the inter-grain cementation stiffness,on the effective elastic properties of a granular porous rock(Bentheim sandstone)using an advanced numerical workflow with realistic rock microstructure and a theoretical model.First,the disparity between the experimentally tested elastic properties of Bentheim sandstone and the effective elastic properties predicted by empirical equations was analysed.Then,a micro-computed tomography(CT)-scan based approach was implemented with digital imaging software AVIZO to construct the 3D(three-dimensional)realistic microstructure of Bentheim sandstone.The microstructural model was imported to a mechanics solver based on the 3D finite element model with inter-grain boundaries modelled by cohesive elements.Loading simulations were run to test the effective elastic properties for different shear and normal intergrain cementation stiffness.Finally,a relation between the macroscale Young’s modulus and inter-grain cementation stiffness was derived with a theoretical model which can also account for porosity explicitly.Both the numerical and theoretical results indicate the influence of the inter-grain cementation stiffness,on the effective elastic properties is significant for porous sandstone.The calibrated normal and shear stiffnesses at the inter-grain boundaries are 1.2×10^(5) and 4×10^(4) GPa/m,respectively.

关 键 词:Porous sandstone Cohesive finite element model Grain-based model Rock microstructure Micro-computed tomography(CT) 

分 类 号:TU45[建筑科学—岩土工程]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象