面向细胞显微成像的虚拟染色技术的研究  被引量:1

Virtual staining techniques for cellular microscopic imaging

在线阅读下载全文

作  者:张浩 戴博[1] 张大伟[1] ZHANG Hao;DAI Bo;ZHANG Dawei(School of Optical-Electrical and Computer Engineering,University of Shanghai for Science and Technology,Shanghai 200093,China)

机构地区:[1]上海理工大学光电信息与计算机工程学院,上海200093

出  处:《光学仪器》2023年第1期18-24,共7页Optical Instruments

基  金:上海市科技创新支持项目(2021-cyxt1-kj06)。

摘  要:细胞显微成像是生物学研究中进行细胞表型检测、获取细胞特征信息的重要手段。传统荧光成像技术是目前主要的细胞成像手段,但是荧光成像系统结构复杂、成本较高,而且特异性染色会对细胞造成损伤。针对此问题,研究了一种虚拟染色技术,使用多模态配准算法执行严格配准明场和荧光图像数据集,改进网络架构、损失函数、后处理、硬件适应性用于训练优化,并且通过虚拟染色评价标准对染色转换偏差进行验证。该方法可以降低荧光成像对荧光成像设备的依赖,无需各种复杂的染色操作,将会减轻生物研究、病理分析、疾病诊断流程的负担。Cell microscopic imaging is an important tool for cell phenotype detection.Traditional fluorescence imaging techniques are widely used in the cell imaging.However,the fluorescence imaging instruments have complex structure and high cost.Besides,staining could cause damage to cells.To address this problem,this paper proposes a virtual staining technique that performs strict alignment of bright field and fluorescence image datasets using a multimodal alignment algorithm,and improves network architecture,loss function,post-processing,and hardware adaptation for training optimization.The staining conversion bias is calculated by the evaluation criteria of the virtual staining.The method presented in this paper could simplify the fluorescence imaging equipment and eliminates the need for various staining operations,which could reduce the burden of research and diagnostic processes for biologists and pathologists.

关 键 词:深度学习 细胞成像 虚拟染色 

分 类 号:TP391[自动化与计算机技术—计算机应用技术]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象