检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:刘云鹏 来庭煜 刘嘉硕 魏晓光 裴少通 Liu Yunpeng;Lai Tingyu;Liu Jiashuo;Wei Xiaoguang;Pei Shaotong(Hebei Provincial Key Laboratory of Power Transmission Equipment Security Defense North China Electric Power University,Baoding 071003,China;State Key Laboratory of Advanced Power Transmission Technology Global Energy Interconnection Research Institute Co.Ltd,Beijing 102209,China)
机构地区:[1]河北省输变电设备安全防御重点实验室(华北电力大学),保定071003 [2]先进输电技术国家重点实验室(全球能源互联网研究院有限公司),北京102209
出 处:《电工技术学报》2023年第5期1375-1389,共15页Transactions of China Electrotechnical Society
基 金:先进输电技术国家重点实验室开放基金(GEIRI-SKL-2020-003);北京市自然科学基金(3212039)资助项目。
摘 要:饱和电抗器作为特高压直流换流阀的核心装备,运行中产生的振动声音包含大量的信息,其状态评估对换流阀的安全运行具有重要意义。该文提出一种基于优化S变换和改进深度残差收缩网络的饱和电抗器铁心松动程度声纹识别模型。首先开展了高频脉冲激励下的饱和电抗器振动试验,并测量了不同铁心松动程度下的声纹信号;其次在声信号频谱主值区间内,根据能量聚集性优化高斯窗参数来提高声纹图谱的时频分辨率;然后对松动后的声纹特性进行分析,发现高低频比和低频分量主频占比两个特征指标仅能对松动程度较高的状态做出预警;最后采用五个不同方位测点的铁心松动数据代入基于自适应参数修正线性单元的改进深度残差收缩网络中进行训练,来消除声纹图中的冗余信息,并对不同松动程度下的特征进行独立映射,从而增强共同特征的学习能力。研究结果表明,该文模型对电抗器不同铁心松动程度的平均识别准确率达到95.93%,优于传统深度学习算法,可为饱和电抗器在线监测提供重要依据。As the key equipment in converter valves,the saturable reactor is used to protect the normal opening and closing of the thyristor.However,in the process of microsecond conduction of the thyristor,the high harmonics will produce high frequency mechanical vibration and thermal shock vibration on the saturable reactor,increasing the probability of the fault of the saturable reactor.Therefore,it is of great significance to evaluate its status.Recently,some methods were proposed to monitor the state of the saturable reactor,but most of them can only monitor the abnormal temperature rise of the core,and cannot identify the mechanical failure of the core.This paper presents a voiceprint identification model of saturable reactor core looseness based on optimized Stransform(OST)and improved deep residual shrinkage network(IDRSN).The saturable reactor vibration sound is used to identify the core looseness accurately.Firstly,the vibration test of saturable reactor at high frequency pulse excitation was carried out,and the voiceprint signals in different core looseness were measured.Secondly,in the principal value range of acoustic signal spectrum,the Gaussian window parameters were optimized by using the energy concentration formula to improve the time-frequency resolution of voiceprint spectrum.Thirdly,the voiceprint characteristics after loosening were analyzed,it was found that two characteristic indexes of high-low frequency ratio and dominant frequency ratio in low-frequency component can only give early warning to the state with high degree of loosening.Finally,the core loosening data of five different azimuth measuring points were brought into improved deep residual shrinkage network based on adaptively parametric rectifier linear unit for training,to eliminate the redundant information in the voiceprint spectrum and map the features in different degrees of looseness independently,so as to enhance the learning ability of common features.The results of saturable reactor vibration voiceprint test show that the vibratio
关 键 词:饱和电抗器声纹 优化S变换 铁心松动试验 特征提取 改进深度残差收缩网络
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.38