检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:王彬 徐杨 石进 张显国 WANG Bin;XU Yang;SHI Jin;ZHANG Xian-guo(School of Big Data and Information Engineering,Guizhou University,Guiyang 550025,China;Guiyang Aluminum Magnesium Design and Research Institute Co.,Ltd.,Guiyang 550009,China)
机构地区:[1]贵州大学大数据与信息工程学院,贵州贵阳550025 [2]贵阳铝镁设计研究院有限公司,贵州贵阳550009
出 处:《计算机技术与发展》2023年第3期27-33,共7页Computer Technology and Development
基 金:贵州省科技计划项目(黔科合支撑[2021]一般176)。
摘 要:针对人脸表情识别研究中特征提取不充分、难以辨别人脸表情细微的类间差异等问题,提出了一种多分支精简双线池性化的人脸表情识别方法。该方法以ResNet-18为基础,在避免大幅度增加计算复杂度的前提下提升ResNet-18的特征提取能力,提出了一个新的多样化分支块(diverse branch block)对ResNet-18进行改进;为使改进后的ResNet-18更方便地聚焦人脸图像中产生表情区域的特征,提出了残差空间注意力;为了减少人脸表情细微的类间差异带来的不利影响,增强人脸表情类间的区别性,设计了多分支精简双线性池化结构。最后用所提的方法分别在公开的人脸表情数据集CK+、RAF-DB进行实验,识别率分别达到了98.46%、82.99%。实验结果表明,该方法的识别率优于DLP-CNN、MA、DeepExp3D等诸多的表情识别方法,具有一定的竞争性。Aiming at the problems of insufficient feature extraction and difficulty in distinguishing subtle inter-class differences in facial expression recognition in the study of facial expression recognition,a multi-branch compact bilinear pooling facial expression recognition method is proposed.Based on ResNet-18,this method improves the feature extraction capability of ResNet-18 without greatly increasing the computational complexity,and proposes a new diverse branch block to improve ResNet-18.To make the improved ResNet-18 more convenient to focus on the features of expression regions in face images,the residual spatial attention is proposed.In order to reduce the adverse effects of subtle inter-class differences in facial expressions and enhance the distinction between facial expression classes,a multi-branch compact bilinear pooling structure is designed.Finally,the proposed method was used to conduct experiments on the public facial expression datasets CK+and RAF-DB,and the recognition rates reached 98.46%and 82.99%,respectively.The experimental results show that the recognition rate of the proposed method is better than that of DLP-CNN,MA,DeepExp3D and many other expression recognition methods,with certain competitiveness.
关 键 词:人脸表情识别 多样化分支块 残差空间注意力 多分支精简双线性池化 ResNet-18
分 类 号:TP391.4[自动化与计算机技术—计算机应用技术]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:18.116.49.6