多源卫星遥感影像的林火监测  被引量:6

Research on Forest Fire Monitoring Based on Multi-Source Satellite Remote Sensing Images

在线阅读下载全文

作  者:尹俊玥 何瑞瑞 赵凤君[3] 叶江霞 YIN Jun-yue;HE Rui-rui;ZHAO Feng-jun;YE Jiang-xia(College of Forestry,Southwest Forestry University,Kunming 650224,China;Forestry and Grassland Administration of Bayingoleng Mongol Autonomous Prefecture Xinjiang Bazhou“Three Norths”Protection Forest Construction Management Office,Bayingoleng 841009,China;Institute of Forest Ecology and Nature Conservation,Chinese Academy of Forestry,Key Laboratory of Forest Conservation,State Forestry and Grassland Administration,Beijing 100091,China)

机构地区:[1]西南林业大学林学院,云南昆明650224 [2]巴音郭楞蒙古自治州林业和草原局,新疆巴州“三北”防护林建设管理办公室,新疆巴音郭楞841009 [3]中国林业科学研究院森林生态环境与自然保护研究所,国家林业和草原局森林保护学重点实验室,北京100091

出  处:《光谱学与光谱分析》2023年第3期917-926,共10页Spectroscopy and Spectral Analysis

基  金:国家“十三五”重点研发计划项目课题(2020YFC1511601);国家自然科学基金项目(32071778)资助。

摘  要:目前遥感林火监测主要侧重极轨卫星火点探测精度,而基于多源遥感影像进行火点、烟雾特征等综合火场信息遥感监测识别研究较少。以云南省安宁市2020年5月9日森林火灾为研究对象,基于高分六号卫星宽幅(GF-6 WFV)数据和风云三号D极轨气象卫星中分辨率光谱仪(FY-3D MERSI)数据进行火场烟雾、火烧迹地提取及火点判识。首先根据GF-6 WFV影像,选取6种光谱特征指数,以最大似然法、支持向量机分类法及随机森林分类法,识别火场烟雾和火烧迹地,并进行精度评价;然后,基于1 km的FY-3D MERSI中红外通道数据,对潜在火点识别算法进行改进,根据FY-3C VIRR和MODIS火点探测基本原理,利用动态阈值和上下文检测法识别火点,再结合250m分辨率的远红外通道优化识别结果。最后结合两种数据提取的烟雾、火点及火烧迹地信息,探讨分析GF-6 WFV与FY-3D MERSI对于林火的监测能力。结果表明:通过5种特征指数及GF-6 WVF数据的8个波段,能有效识别出烟雾及火烧迹地,3种分类方法中随机森林分类效果最佳,总体分类精度和Kappa系数为97.20%和0.955;改进后的FY-3D MERSI数据火点识别算法,能有效提高火点识别的准确率;将中红外通道与远红外通道相结合探测火点,能使火点识别能力由千米级提高至百米级;综合GF-6 WFV及FY-3D MERSI数据可有效提取火场的烟雾、火烧迹地及火点信息。利用多源数据,可多方位进行林火监测预警,对于提高卫星遥感林火监测能力具有重要意义。At present,remote sensing forest fire monitoring mainly focuses on the accuracy of fire point detection by polar-orbiting satellites.At the same time,there is less research on remote sensing monitoring and identification of fire points,smoke characteristics and other comprehensive fire information based on multi-source remote sensing images.The forest fire of May 9,2020,in Anning City,Yunnan Province,was studied based on the Gaofen-6 wide-field(GF-6 WFV)data and the FY-3D polar-orbiting meteorological satellite medium-resolution spectrometer(FY-3D MERSI)data for smoke,burned areas extraction and fire point identification.Firstly,Based on GF-6 WFV data,six spectral feature indices were selected to identify fire smoke and fire trails by maximum likelihood,support vector machine,and random forest classification methods,and evaluated for accuracy.Then,Based on the 1 km mid-infrared channel data of FY-3D MERSI,the potential fire point identification algorithm is improved,and the basic principles of FY-3C VIRR and MODIS fire point detection are combined with dynamic threshold and context detection method to identify fire points.Then the identification results are optimized by combining the far-infrared channel with 250 m resolution.Finally,the information on smoke,fire points and fire trails extracted from the two kinds of data were combined to explore and analyze the monitoring capability of GF-6 WFV and FY-3D MERSI for forest fires.The results show that the smoke and burned areas can be effectively identified by five feature indices and eight bands of GF-6 WVF data,and the random forest classification is the most effective among the three classification methods,with an overall classification accuracy and Kappa coefficient of 97.20%and 0.955.The improved fire point recognition algorithm for FY-3D MERSI data can effectively improve the recognition accuracy of fire points.Combining the mid-infrared-and far-infrared channels to detect fires can improve the fire detection accuracy from kilometer to 100 meter level.The com

关 键 词:卫星遥感 GF-6 WFV 林火监测 FY-3D MERSI 烟雾特征 

分 类 号:S762.2[农业科学—森林保护学]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象