检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:罗森 任鸿瑞[1] 张悦琦 LUO Sen;REN Hong-rui;ZHANG Yue-qi(Department of Surveying and Mapping,Taiyuan University of Technology,Taiyuan 030024,China;State Key Laboratory of Remote Sensing Science,Beijing Normal University,Beijing 100875,China)
机构地区:[1]太原理工大学测绘科学与技术系,山西太原030024 [2]北京师范大学遥感科学国家重点实验室,北京100875
出 处:《光谱学与光谱分析》2023年第3期955-961,共7页Spectroscopy and Spectral Analysis
基 金:国家重点研发计划项目(2018YFA0606103);遥感科学国家重点实验室开放基金项目(OFSLRSS202006);山西省重点研发计划(国际科技合作)项目(201903D421089)资助。
摘 要:草地绿色生物量是监测草地生态系统的重要指标。高效高精度估算草地绿色生物量对草地生态系统具有重要意义。遥感技术因方便快捷、成本较低等优势,已被广泛应用于生物量估算,而传统光学遥感技术易受云层、气候条件等因素影响,不适用于高密度植被区。因此,受外界环境影响较小且具有一定穿透性的合成孔径雷达技术在生物量估算中得到了推广;但当前SAR技术多用于估算森林生物量与作物生物量,鲜有估算草地绿色生物量的研究。故选取内蒙古草原为研究区,基于Sentinel-1A SLC影像提取后向散射系数、纹理特征、极化分解量共11种雷达指数,并根据已有雷达植被指数(σ0和σ′0)引入2种雷达植被指数(σ1和σ′1),结合草地绿色生物量实测数据分别对15种雷达指数进行建模分析。结果表明纹理特征中的均值、后向散射系数σVH为估算草地绿色生物量最佳雷达指数,其估算模型R^(2)分别为0.54和0.60,RMSE分别为47.3和44.3 g·m^(-2),此外,雷达植被指数σ0和σ1估算草地绿色生物量也可获得较高精度,其估算模型R^(2)分别为0.53和0.42,RMSE分别为47.6和53.0 g·m^(-2)。研究证明SAR技术在高效高精度草地绿色生物量估算中具有较强应用潜力,但在误差消除方面仍需改进。Grassland green biomass is an important index for monitoring the grassland ecosystem,and it is of great significance to estimate green biomass efficiently and accurately.Remote sensing technology has been widely used in biomass estimation due to its convenience and low cost advantages.However,traditional optical remote sensing technology is susceptible to the cloud and climatic conditions and unsuitable for high-density vegetation areas.Therefore,Synthetic Aperture Radar(SAR)technology,which is less affected by the external environment and has certain penetration,has been promoted in biomass estimation.However,the current SAR technology is mostly used to estimate forest biomass and crop biomass,and there are few studies on estimating grassland green biomass.Therefore,the Inner Mongolia grassland was selected as the research area,and 11 radar indices,including backscattering coefficient,texture characteristics and polarization decomposition,were extracted from Sentinel-1A SLC images.Two radar vegetation indices(σ1 andσ′1)were introduced based on the existing radar vegetation indices(σ0 andσ′0).Based on the measured data of grassland green biomass,15 radar indices were modeled and analyzed respectively.The results showed that the mean value and the backscattering coefficientσVH in the texture feature were the best radar indices for estimating grassland green biomass,and their estimation models R^(2) were 0.54 and 0.60,respectively.RMSE were 47.3 and 44.3 g·m^(-2),respectively.In addition,radar vegetation indicesσ0 andσ1 can also be used to estimate green biomass of grassland with high accuracy,with R^(2) of 0.53 and 0.42,RMSE of 47.6 and 53.0 g·m^(-2),respectively.This study proved that SAR technology has strong application potential in high-efficiency and high-precision estimation of grassland green biomass,but it still needs improvement in error elimination.
分 类 号:TP79[自动化与计算机技术—检测技术与自动化装置]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.224