基于Bootstrap误差修正的电力负荷短期预测深度学习模型  被引量:5

Deep learning model for short-term power load prediction based on Bootstrap error correction

在线阅读下载全文

作  者:张宇晨 姜雪松[1] 李春伟[1] 刘森 ZHANG Yuchen;JIANG Xuesong;LI Chunwei;LIU Sen(College of Engineering and Technology,Northeast Forestry University,Harbin 150040,China)

机构地区:[1]东北林业大学工程技术学院,黑龙江哈尔滨150040

出  处:《热力发电》2023年第3期121-129,共9页Thermal Power Generation

基  金:黑龙江省自然科学基金项目(LH2019E001)。

摘  要:针对负荷数据非线性、强波动性等特点导致数据规律性较弱电力负荷预测模型不准确的问题,构建基于Bootstrap误差修正的TCN-WOA-Bi LSTM-Attention电力负荷短期预测模型。使用时序卷积神经网络(TCN)提取时序特征并通过注意力机制(Attention机制)对特征突出重要信息贡献度,通过鲸鱼优化算法(WOA)寻找双向长短时记忆(Bi LSTM)神经网络最优超参数以减少人工搜索超参数的负面影响后进行预测;基于Bootstrap分析预测区间误差分布,通过覆盖率(PICP)是否低于对应置信度判断对预测结果进行修正的必要性,并选取合理修正范围。仿真结果表明,基于Bootstrap方法进行误差修正避免了修正不足及修正过度的问题,对比将误差序列全部修正的方法更具有科学性,能最大程度提高模型预测精度。Aiming at the problem of weak internal regularity caused by the characteristics of nonlinear and strong fluctuation of load data,a TCN-WOA-BiLSTM-Attention power load short-term prediction model based on Bootstrap error correction was constructed.Temporal convolutional network(TCN)was used to extract temporal features and the contribution of important information to the features was highlighted through the Attention mechanism.The whale optimization algorithm(WOA)was employed to find the optimal bidirectional long short term memory network(BiLSTM)hyperparameters,thus to reduce the negative impact of manual search hyperparameters and then forecast.Based on Bootstrap analysis on error distribution of the prediction interval,the necessity of correcting the prediction result was judged by whether the PICP was lower than the corresponding confidence,and the reasonable correction range was selected.The results show that,the error correction based on the Bootstrap method can avoid the problem of insufficient correction and excessive correction.Compared with the method of correcting the whole error sequence,it is more scientific and improves the prediction accuracy of the model to the greatest extent.

关 键 词:电力负荷短期预测 BOOTSTRAP 误差修正 时序卷积神经网络 鲸鱼优化算法 

分 类 号:TM715[电气工程—电力系统及自动化] TP18[自动化与计算机技术—控制理论与控制工程]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象