Volterra型积分微分方程Chebyshev谱配置法求解  

Volterra type integral-differential equations solution by Chebyshev spectral collocation method

在线阅读下载全文

作  者:方春华[1] 黄超兰 王建雨 FANG Chunhua;HUANG Chaolan;WANG Jianyu(School of Mathematics,Hunan Institute of Science and Technology,Yueyang 414006,China)

机构地区:[1]湖南理工学院数学学院,湖南岳阳414006

出  处:《大连理工大学学报》2023年第2期215-220,共6页Journal of Dalian University of Technology

基  金:湖南省自然科学基金资助项目(2022JJ30276)。

摘  要:采用Chebyshev谱配置法求解Volterra型积分微分方程.首先将积分微分方程改写成等价的第二类Volterra积分方程组,再取Clenshaw-Curtis点为配置点,然后利用Clenshaw-Curtis求积法则离散方程中积分项得到配置方程组,最后给出在L∞范数空间下的误差分析,并用数值实例验证理论分析的结果.该方法既有谱精度,程序又易实现.The Chebyshev spectral collocation method is proposed to solve Volterra type integral-differential equations. Firstly, the integral-differential equation is rewritten into an equivalent system of Volterra integral equations of the second type, and Clenshaw-Curtis point is taken as the collocation point, then Clenshaw-Curtis quadrature rule is used to discretize the integral term in the equation to obtain the collocation equations, and finally the error analysis is conducted in L∞norm space and numerical examples are presented to verify the theoretical results. The method has spectral accuracy and is easy to implement.

关 键 词:VOLTERRA型积分微分方程 第二类Volterra积分方程组 Chebyshev谱配置法 Clenshaw-Curtis求积 谱精度 

分 类 号:O241.83[理学—计算数学]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象