检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:方春华[1] 黄超兰 王建雨 FANG Chunhua;HUANG Chaolan;WANG Jianyu(School of Mathematics,Hunan Institute of Science and Technology,Yueyang 414006,China)
出 处:《大连理工大学学报》2023年第2期215-220,共6页Journal of Dalian University of Technology
基 金:湖南省自然科学基金资助项目(2022JJ30276)。
摘 要:采用Chebyshev谱配置法求解Volterra型积分微分方程.首先将积分微分方程改写成等价的第二类Volterra积分方程组,再取Clenshaw-Curtis点为配置点,然后利用Clenshaw-Curtis求积法则离散方程中积分项得到配置方程组,最后给出在L∞范数空间下的误差分析,并用数值实例验证理论分析的结果.该方法既有谱精度,程序又易实现.The Chebyshev spectral collocation method is proposed to solve Volterra type integral-differential equations. Firstly, the integral-differential equation is rewritten into an equivalent system of Volterra integral equations of the second type, and Clenshaw-Curtis point is taken as the collocation point, then Clenshaw-Curtis quadrature rule is used to discretize the integral term in the equation to obtain the collocation equations, and finally the error analysis is conducted in L∞norm space and numerical examples are presented to verify the theoretical results. The method has spectral accuracy and is easy to implement.
关 键 词:VOLTERRA型积分微分方程 第二类Volterra积分方程组 Chebyshev谱配置法 Clenshaw-Curtis求积 谱精度
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.225