杭州市科技金融效率评价与影响因素研究--基于AHP-DEA-Tobit模型  被引量:1

Research on Evaluation and Influencing Factors of Sci-Tech Finance Efficiency in Hangzhou:Based on AHP-DEA-Tobit model

在线阅读下载全文

作  者:赵玲[1] 贺小海[1] 仰小凤 ZHAO Ling;HE Xiaohai;YANG Xiaofeng(School of Economics,Hangzhou Normal University,Hangzhou 311121,China)

机构地区:[1]杭州师范大学经济学院,杭州311121

出  处:《科技和产业》2023年第4期80-85,共6页Science Technology and Industry

基  金:浙江省软科学重点项目(2021C25002)。

摘  要:科技与金融的有效结合,可以有力促进科技创新,推动经济健康持续发展。运用AHP-DEA模型对2007-2020年杭州市科技金融进行效率评价,结果表明,杭州市科技金融总体效率不佳,主要因为规模效率非有效,且各年效率呈W型变化,变化率较大,稳定性较差。运用Tobit模型从政府、金融市场、企业三方面对杭州市科技金融效率一般影响因素进行研究,结果表明,政府主导对科技金融效率存在负面影响,而市场机制能更好提升科技金融结合效率,企业科技投入也存在正面影响。因此杭州市需优化科技金融投入结构,提升企业自主创新能力,以提升科技金融资源配置及使用效率。The effective combination of science-technology and finance can effectively promote the development of science-technology innovation and promote the healthy and sustainable development of the economy.The AHP-DEA model is used to evaluate the efficiency of Sci-Tech finance in Hangzhou from 2007 to 2020.The results show that the overall efficiency of Sci-Tech finance in Hangzhou is not good,mainly because the scale efficiency is not effective.The efficiency shows a W-shaped change in each year,with a large change rate and poor stability.The Tobit model is used to analyze the general factors affecting the efficiency of Sci-Tech finance in Hangzhou from three aspects of government,financial market and enterprises.The results show that the government’s leading has a negative impact on the efficiency,while the market mechanism can better improve the efficiency,and the enterprise’s investment also has a positive impact.It is necessary for Hangzhou to optimize the investment structure of Sci-Tech finance,improve the innovation ability of enterprises,so as to improve the efficiency of Sci-Tech finance resources.

关 键 词:AHP-DEA-Tobit模型 科技金融效率评价 效率影响因素 

分 类 号:F830[经济管理—金融学]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象