基于睡眠脑电信号和深度学习的抑郁症识别研究  被引量:3

Identifying Depressive Disorder With Sleep Electroencephalogram Data: A Study Based on Deep Learning

在线阅读下载全文

作  者:陶然[1] 丁胜男 陈洁 朱学敏 倪照军 胡令明 张杨[3] 许燕[2] 孙洪强[3] TAO Ran;DING Sheng-nan;CHEN Jie;ZHU Xue-min;NI Zhao-jun;HU Ling-ming;ZHANG Yang;XU Yan;SUN Hong-qiang(Department of Medical Technology,Peking University Sixth Hospital,Peking University Institute of Mental Health,and Key Laboratory of Mental Health of the National Health Commission(Peking University),Beijing 100191,China;School of Biological and Medical Engineering,Beijing University of Aeronautics and Astronautics,Beijing 100083,China;Department of Sleep Medicine,Peking University Sixth Hospital,Peking University Institute of Mental Health,and Key Laboratory of Mental Health of the National Health Commission(Peking University),Beijing 100191,China)

机构地区:[1]北京大学第六医院医技科,北京大学精神卫生研究所,国家卫生健康委员会精神卫生学重点实验室(北京大学),北京100191 [2]北京航空航天大学生物与医学工程学院,北京100083 [3]北京大学第六医院睡眠医学科,北京大学精神卫生研究所,国家卫生健康委员会精神卫生学重点实验室(北京大学),北京100191

出  处:《四川大学学报(医学版)》2023年第2期287-292,共6页Journal of Sichuan University(Medical Sciences)

基  金:科技部科技创新2030-重大项目(No.2030-2021ZD0201903)资助。

摘  要:目的 基于睡眠脑电信号,探索深度学习Vision Transformer(ViT)结合Transformer网络对抑郁症患者识别的有效性。方法 首先对28例抑郁症患者和37例正常对照的睡眠脑电信号进行预处理,并将信号转为图像格式,保留其频域及空间域特征信息,之后将图像输送到ViT-Transformer编码网络,分别学习抑郁症患者和正常对照的快速眼动(rapid eye movement, REM)睡眠期和非快速眼动(non-rapid eye movement, NREM)睡眠期的脑电信号特征,并对抑郁症进行识别。结果 基于ViT-Transformer网络,从不同脑电频率角度,发现delta、theta和beta波的组合对抑郁症识别具有比较好的结果。其中,REM期delta-theta-beta波组合的脑电信号特征对抑郁症识别的准确率达92.8%,精准率为93.8%,抑郁症患者的召回率为84.7%,F0.5值为0.917±0.074;NREM期delta-theta-beta波组合的脑电信号特征对抑郁症的识别准确率为91.7%,精准率为90.8%,召回率为85.2%,F0.5值为0.914±0.062。此外,通过对整夜睡眠脑电的睡眠分期进行可视化,发现分类错误通常发生在睡眠期转期时。结论 应用深度学习ViT-Transformer网络,本研究发现基于delta-theta-beta波组合的REM期睡眠脑电信号特征对抑郁症识别更有效。Objective To explore the effectiveness of using deep learning network combined Vision Transformer(ViT) and Transformer to identify patients with depressive disorder on the basis of their sleep electroencephalogram(EEG) signals. Methods The sleep EEG signals of 28 patients with depressive disorder and 37normal controls were preprocessed. Then, the signals were converted into image format and the feature information on frequency domain and spatial domain was retained. After that, the images were transmitted to the ViT-Transformer coding network for deep learning of the EEG signal characteristics of the rapid eye movement(REM) sleep and non-rapid eye movement(NREM) sleep in patients with depressive disorder and those in normal controls, respectively, and to identify patients with depressive disorder. Results Based on the ViT-Transformer network, after examining different EEG frequencies, we found that the combination of delta, theta, and beta waves produced better results in identifying depressive disorder. Among the different EEG frequencies, EEG signal features of delta-theta-beta combination waves in REM sleep achieved 92.8% accuracy and 93.8% precision for identifying depression, with the recall rate of patients with depression being 84.7%, and the F0.5 value being 0.917±0.074. When using the delta-theta-beta combination EEG signal features in NREM sleep to identify depressive disorder, the accuracy was 91.7%, the precision was 90.8%, the recall rate was 85.2%, and the F0.5 value was 0.914±0.062. In addition, through visualization of the sleep EEG of different sleep stages for the whole night, it was found that classification errors usually occurred during transition to a different sleep stage.Conclusion Using the deep learning ViT-Transformer network, we found that the EEG signal features in REM sleep based on delta-theta-beta combination waves showed better effect in identifying depressive disorder.

关 键 词:抑郁症 睡眠脑电 深度学习 快速眼动睡眠期 非快速眼动睡眠期 

分 类 号:TN911.7[电子电信—通信与信息系统] TP18[电子电信—信息与通信工程] R749.4[自动化与计算机技术—控制理论与控制工程]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象