Tuning Li nucleation and growth via oxygen vacancy-enriched 3D flexible self-supporting protection layer of P-Mn_(3)O_(4-x)for advanced lithium-sulfur batteries  

在线阅读下载全文

作  者:Tao Liu Jing Li Hongtao Cui Yuanyuan Liu Kaihua Liu Huiying Wei Meiri Wang 

机构地区:[1]Shandong Engineering Research Center of Green Manufacturing for New Chemical Materials,School of Chemistry&Chemical Engineering,Yantai University,Yantai 264005,Shandong,China [2]School of Chemistry and Chemical Engineering,Shandong University,Jinan 250100,Shandong,China

出  处:《Journal of Energy Chemistry》2023年第1期339-348,I0009,共11页能源化学(英文版)

基  金:supported by the Natural Science Foundation of Shandong Province(ZR2021MB101,ZR2021ME113,ZR2021ME177,and ZR2021QE096)。

摘  要:Lithium sulfur batteries have attracted much attention due to their high theoretical specific energy and environmental friendliness.However,the practical application is severely plagued by the cycling life issues resulting from the uncontrollable generation and growth of Li dendrites.Herein,an innovative 3D flexible self-supporting Li anode protection layer of P-Mn_(3)O_(4-x)is constructed via a facile solvothermal method followed by an annealing process.Benefiting from the rich oxygen vacancies coupled with the 3D flexible self-supporting skeleton,abundant lithiophilic sites and high ionic conductivity are obtained,which succeed in guiding Li+homogeneous adsorption and redistribution,accelerating Li+diffusion rate,inducing Li+uniform deposition and nucleation.DFT calculations and experimental results conclusively demonstrate such a protection mechanism.Meanwhile,the effective anchoring and catalytic nature of polar P-Mn_(3)O_(4-x)can also be applied as an immobilization-diffusion-conversion host to improve polysulfides redox.Taking advantage of these merits,super-stable functions for Li symmetric cell matched with P-Mn_(3)O_(4-x)layer are achieved,which exhibits an ultralong lifespan of>5000 h with an ultralow overpotential of 20 m V,far lower than that of bare Li symmetric cell(overpotential of 800 m V only after 250 h)at high current densities of 5 m A cm^(-2)and high plating/stripping capacity of 10 m A h cm^(-2).Even in Li|P-Mn_(3)O_(4-x)||S full cell at 1 C,a high initial discharge specific capacity of 843.1 m A h g^(-1)is still delivered with ultralow capacity fading rate of 0.07%per cycle after 250 cycles,further confirming the synergistic regulation of P-Mn_(3)O_(4-x)for Li nucleation behavior.This work illustrates a sufficient guarantee of 3D protection layer coupled with oxygen vacancies in guiding Li diffusion and nucleation behavior and provides new guidance for promoting the development of advanced Li-S batteries.

关 键 词:Oxygen vacancy P-DOPING ithium sulfur batteries Protection layers 

分 类 号:TM912[电气工程—电力电子与电力传动]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象