检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:刘展 郑俊博 刘洋[2] 潘莹丽 Liu Zhan;Zheng Junbo;Liu Yang;Pan Yingli(Faculty of Mathematics and Statistics,Hubei University,Wuhan 430062,China;School of Economics and Business Administration,Central China Normal University,Wuhan 430079,China)
机构地区:[1]湖北大学、数学与统计学学院,武汉430062 [2]华中师范大学、经济与工商管理学院,武汉430079
出 处:《统计与决策》2023年第4期10-15,共6页Statistics & Decision
基 金:国家社会科学基金一般项目(18BTJ022)。
摘 要:大数据下的样本大多为非概率样本,其入样概率未知,同时可能面临着协变量较多甚至是高维的情况,那么如何对这种情况下的非概率样本进行推断值得探索。针对该问题,文章考虑到Model-X Knockoffs的降维特点,提出采用Model-X Knockoffs筛选出重要变量,建立Logistic倾向得分模型来估计非概率样本的入样概率或倾向得分,对总体进行推断,从而提高估计的精度,同时可控制变量选择的错误发现率与功效。模拟与实证研究结果表明:基于Model-X Knockoffs的Logistic倾向得分模型的总体均值估计相比一般的Logistic倾向得分模型和广义线性回归模型的总体均值估计,偏差更小、效率更高、估计效果更好,并且能很好地控制错误发现率的水平,功效值也接近1。The samples under big data are mostly non-probabilistic samples with unknown inclusion probabilities, and may also face the situation of more covariables or even high dimensions. To solve this problem, this paper considers the dimensionality reduction characteristics of Model-X Knockoffs and proposes the method of using Model-X Knockoffs to select important variables, and then constructs a Logistic propensity score model to estimate selection probabilities or propensity scores of non-probability samples for population inference, so as to improve the accuracy of estimation and control the false discovery rate(FDR) and the power of variable selection. Simulation and empirical analysis results show that the population mean estimator of Logistic propensity score model based on Model-X Knockoffs has smaller bias, higher efficiency and better performance than the population mean estimators of the general Logistic propensity score model and the generalized linear regression model. Besides, the proposed method can control the level of FDR well, and its power is close to 1.
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.229