检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:Ke-Jia CHEN Mingyu WU Yibo ZHANG Zhiwei CHEN
机构地区:[1]School of Computer Science,Nanjing University of Posts and Telecommunications,Nanjing 210023,China [2]Jiangsu Key Laboratory of Big Data Security&Intelligent Processing,Nanjing University of Posts and Telecommunications,Nanjing 210023,China [3]College of Telecommunications and Information Engineering,Nanjing University of Posts and Telecommunications,Nanjing 210003,China
出 处:《Frontiers of Computer Science》2023年第1期123-132,共10页中国计算机科学前沿(英文版)
基 金:supported by the National Natural Science Foundation of China(Grant Nos.61603197 and 61772284);Natural Science Foundation of Nanjing University of Posts and Telecommunications(NY221071).
摘 要:Image super-resolution (SR) is one of the classic computer vision tasks. This paper proposes a super-resolution network based on adaptive frequency component upsampling, named SR-AFU. The network is composed of multiple cascaded dilated convolution residual blocks (CDCRB) to extract multi-resolution features representing image semantics, and multiple multi-size convolutional upsampling blocks (MCUB) to adaptively upsample different frequency components using CDCRB features. The paper also defines a new loss function based on the discrete wavelet transform, making the reconstructed SR images closer to human perception. Experiments on the benchmark datasets show that SR-AFU has higher peak signal to noise ratio (PSNR), significantly faster training speed and more realistic visual effects compared with the existing methods.
关 键 词:SUPER-RESOLUTION multi-resolution features adaptive frequency upsampling wavelet transformation
分 类 号:TP391.41[自动化与计算机技术—计算机应用技术]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.170